All that Robotics brings to Security & Rescue

  • Robotnik is currently involved in 5 projects focused on the security and rescue sectors.

Robotnik focuses a significant part of its work and resources on R&D projects related to the automation and digitalization of industry through robotic applications

Since 2002, Robotnik has been involved in more than 60 projects, most of them at European level and others at local level,

30 projects are currently on progress, each of them of different nature: some of them with objectives oriented to logistics, health sector, or agri-food, among others.

This post compiles 5 of the open robotics projects related to public safety and rescue. 

R&D in Europe

One of Europe's main challenges is to promote research and development within companies, as it is the key to the competitiveness and productivity of each economic sector in the long term. For this reason, there are official funding programmes such as Horizon 2020 that provide support in this regard.

In particular, R&D in robotics technologies has become more important than ever in recent years. There is hardly any country that does not invest - both at company, government and institutional level - in robotics.

This increase in investment is due to several factors, for example, the huge development of some of the catalysts of robotics such as 5G or Artificial Intelligence, which provide an ideal framework, with connections and capabilities that did not exist before.

What are security R&D projects?

Perhaps there is a greater lack of knowledge about research and innovation in this area, but there is much that mobile robotics is contributing to this field. Ministries of Defense, institutions focused on rescue or emergency operations, civil protection, law enforcement and the sectors that work for public safety in general, have their sights set on the advances that this technology represents.

There are different forms of insecurity that can affect citizens, 'be it crime, violence, terrorism, natural or man-made disasters, cyber-attacks or abuses of privacy, and other forms of social and economic disorder'. European Commission.

The projects in which Robotnik is involved aim to understand, detect, prevent, deter, prepare and protect against security threats.

The following points, taken from the European Commission's own website, perfectly summarize the activities that this research framework focuses on:

- Fighting crime, illegal trafficking and terrorism, including understanding and combating terrorist ideas and beliefs;

- Protecting and enhancing the resilience of critical infrastructures, supply chains and transport modes;

- Strengthening security through border management;

- Improve cyber security;

- Increase Europe's resilience to crises and disasters;

- Ensuring privacy and freedom, including on the Internet, and improving society's legal and ethical understanding of all areas of security, risk and management;

- Improve standardization and interoperability of systems, including for emergency purposes;

- Supporting the Union's external security policies, including conflict prevention and peace-building.

Following this contextual framework, the following are the security and rescue projects in which Robotnik is currently involved:

CREST

Fight crime with an autonomous platform with an advanced prediction, prevention, operation and investigation platform leveraging the IoT ecosystem.

Robotnik, as a hardware supplier, is developing a new UGV (unmanned ground vehicle) concept capable of autonomously deploying a small UAV (unmanned aerial vehicle) in the field.

  • Threat detection and assessment.
  • Dynamic mission planning and adaptive navigation for improved surveillance based on autonomous systems.
  • Distributed command and control of law enforcement missions.
  • Sharing of information and exchange of digital evidence based on blockchain.
  • Delivery of pertinent information to different stakeholders in an interactive manner tailored to their needs.

RESPOND-A

It aims to develop holistic and user-friendly solutions for first responders. Robotnik is responsible for the development of robots for hazardous environments and support missions and participates in the development of interfaces between emergency robots and the command-and-control application.

  • Equipment tools and mission-critical strategies for First Responders
  • Augmented and Virtual Reality
  • Passive and active localization and tracking
  • Interactive multi-view 360º video streaming.
  • Autonomous robot and unmanned aerial vehicle coordination.

ROBORDER

Border authorities and law enforcement agencies (LEAs) across Europe face significant challenges in the way they patrol and protect borders. ROBORDER aims to develop and demonstrate a fully functional autonomous border surveillance system with unmanned mobile robots including aerial, water surface, underwater and land vehicles.

Robotnik, as a hardware supplier, is developing a new UGV (unmanned ground vehicle) concept capable of autonomously deploying a small UAV (unmanned aerial vehicle) in the field.

  • Autonomous swarm of heterogeneous Robots for BORDER surveillance.
  • Fully-functional autonomous border surveillance system with unmanned mobile robots including aerial, water surface, underwater and ground vehicles, capable of functioning both as standalone and in swarms.
  • Detection capabilities for early identification of criminal activities and hazardous incidents.

INTREPID

The aim here is to provide first responders with a new approach to accelerate the exploration and assessment of hazardous sites, enabling a rapid and effective response. To revolutionize first responder operations in the early stages of a disaster when the chances of saving lives are greatest and operations are slowed down by many types of uncertainties.

Robotnik's role in the project is to design and develop an intelligent unmanned ground vehicle (UGV) capable of performing exploration missions through rugged terrain or complex indoor locations.

  • Reconnaissance and Assessment in Perilous Incidents
  • A quick response is key in order to save lives and minimize environmental damage.
  • Develop a platform that will allow first responders to safely explore the scene, analyze and assess the existing threats and decide, based on reliable information about the situation, on the next steps to take.
  • Use cybernetic assistants (smart autonomous vehicles) to enhance the speed, range and effectiveness of complex site exploration.

FASTER

FASTER will provide innovative, accepted and efficient tools that enhance the capabilities of first responders in terms of situational awareness and communication.

Robotnik is the leader of the project's Work Package 5: "Autonomous Platforms". It involves the development of a new RB-CAR vehicle and also a SUMMIT-XL robot. They will be used by first responders to explore and check the environment and also to transport some heavy materials.

  • Tactical situational awareness providing innovative visualization services for a portable Common Operational Picture for both indoor and outdoor scenarios representation.
  • Data collection providing a secure IoT platform for distributed.
  • Resilient communication at the field level providing haptic communication capabilities, communication with K9s; and at the infrastructure level through 5G technologies and UAVs.

inspection robot


Robotnik at DECENTER: Mobile robotics + artificial intelligence

Interview PhD- Decenter Project Coordinator.

Artificial Intelligence is a technology in constant evolution and its possibilities and influence in different areas is really wide. There are numerous AI applications related to mobile robotics that have a direct relationship with different industrial sectors. 

All these applications, as well as the habits of today's society, make it necessary to focus our attention on one key point: What do we do with the huge amount of data we generate? 

Robotnik is part of DECENTER, a European project within the H2020 program whose aim is precisely to manage, protect and process this data efficiently and securely. 

Ángel Soriano, responsible for Robotnik in this project, tells us a little more about DECENTER, telling us how it has evolved since its inception, at what stage are the objectives, the conclusions they draw and more.

 

1. Starting the conversation, could you give us a summary of what exactly DECENTER consists of?

DECENTER is a project that aims to provide an infrastructure that facilitates the integration and deployment of their services or applications to Artificial Intelligence and Cloud&Edge computing oriented software developers.

The project contemplates 3 different profiles:

  1. Programmers and architects oriented to distributed computing or edge/cloud computing management.
  2. Developers focused on AI algorithms, which normally require large computational capacity and memory.
  3. Operators or technical staff responsible for the proper functioning and integration of the software deployed on the available hardware.

 

 

DECENTER is intended to make it easier for the technician to integrate AI processes and/or algorithms into the system already deployed in their factory, and also to process them on the edge or in the cloud.

An example: we have a professional who is dedicated to developing an algorithm that is able to identify robots in a photograph. On the other hand, we have a worker-operator who knows his system, who is able to take that photograph, but is not a specialist in Artificial Intelligence. How can he integrate the advantages offered by AI without needing to specialize in it?

DECENTER aims to create these connections and distribute the computation (these algorithms require a lot of computing power) at different levels. 

A local level would be to run it inside the same computer that takes the picture. 

A level above that would be to run it on a computer that is not the same as the one taking the picture, but is within the same region or relatively close (Edge).

And a level above that would be to run it in the cloud.

By playing with these 3 levels, the project offers a platform that facilitates this integration and communication.

 

What role does Robotnik play in the project?

Everything explained above applies to 4 use cases that are defined in the project. Robotnik is a supplier of one of the use cases of the project: robotics logistics.

When a robot is performing its autonomous tasks navigating through the warehouse, it has to make certain decisions based on unforeseen events, such as encountering obstacles blocking its path. On certain occasions, if the robot is not able to identify what the obstacle is, the safest option is first for the robot to stop immediately and then to stop: 

  • Either that the robot remains static waiting until the obstacle disappears to ensure that there is no risk of collision. 
  • Or for the robot to re-plan its trajectory to reach its target from another location and try to avoid the obstacle. 

This is a very common situation in fleets of collaborative mobile robots as they often share workspace with each other and with workers in the same warehouse. 

DECENTER opens up the possibility of applying obstacle identification through AI. 

 

 

Robotnik provides the robots and all the infrastructure, as well as developing the integration of the DECENTER platform within the robot and the structure that we already had and thanks to this service offered by the partner and the project, we have been able to branch out the options for managing fleets of robots in warehouses.

 

2. At this point, which of the objectives set have been met and in which aspects will it be necessary to continue working on?

An example of an objective achieved in the specific use case of Robotnik is: we set out to be able to identify another robot with a confidence level of more than 80% and to reduce the CPU usage of robots by 10% by deriving computation to the edge/cloud. Both objectives have been successfully achieved.

 

3. What does this project mean for Industry 4.0?

There are several things that DECENTER brings to Industry 4.0 directly. One of them is the management of computing: being able to route and manage computing between devices. Distributed computing is something that is now the order of the day and it's purely cutting edge. We even talk about doing it in an intelligent way based on objectives or priorities. 

In Robotnik we design and manufacture mobile robots. If we want a robot to run a very heavy algorithm and with a lot of computational capacity (this happens in many occasions: high resolution cameras, LiDAR that captures 320.000 different points every second...), we must enable it to do so.

The straightforward solution is for the robot's CPU to be very powerful, which usually means it is more expensive. However, with the ability to delegate computation, you have the possibility to send all that data using communication with other devices or the cloud, compute the data there and apply the returned result to the robot.

This reduces costs from the point of view of robot production, makes the system more intelligent as it reduces the electrical consumption of the robot, optimises energy and in general optimises resources.

 

4. Taking into account both large companies and SMEs, what is the biggest challenge for the real application of Artificial Intelligence in industry?

The biggest challenge is undoubtedly that AI is constantly evolving and expanding and its integration in industry requires specialized personnel. Currently there is a gap between the specialized AI community and the personnel involved in the industry who have to deal with the problems of their own industry.

DECENTER tries to bring the two profiles together so that industry can benefit from the application of AI without the need to be an AI specialist.

 

 

 

There is another technological challenge involved in applying the DECENTER methodology in a real industry application, communications. When computing is delegated between devices, and these devices require a certain real-time processing speed, communication between devices needs to be fast and secure. 

At DECENTER we have worked at several levels: 

EDGE. Here you do not need internet to communicate with another device and it is considered a much faster level in terms of communications than the cloud.

The cloud. Here you do need an internet connection to access the servers and it is normally assumed to be slower than EDGE. 

Therefore, in general, communications is the great technological challenge of this methodology. Here we could also talk about 5G, which is another field in which Robotnik is actively participating in other projects.

 

5. Which use cases have had more impact or which sectors have shown interest in DECENTER's advances?

DECENTER is mainly related to data processing, its speed in data transmission and computational capacity. Computational resources. 

All projects have a development process in which use cases are always defined to demonstrate that the development is applicable to real applications. In the end, it is necessary to demonstrate in which areas of interest what is developed during the project will work.

In our DECENTER use case, the stakeholders are anyone who uses logistics robotics.

It can be interesting for any warehouse management, both for the savings it will bring to the company and for the technological and productive leap. 

During the DECENTER pilot, the RB-1 BASE was tested with very attractive results. Now I don't have individual robots, but I have a fleet of computers that 'help' each other to optimize processes, not only from a physical point of view, but above all from the data processing and execution of each one of them: if one of your robots is stopped loading, you can use the computer or PC of that robot to process data from the robot that is moving.


5G and Robotics use cases in Spain

Robotnik is one of the partners that are carrying out the development of different pilot tests around 5G technology a robotics in Spain.

Robotnik, Orange, CFZ Cobots, Elewit, Visyon, Aracnocóptero or Etra, are some of the partners that are carrying out the development of different pilot tests around 5G uses in Valencia, Spain as part of the 5G PILOTS project. The aim is to boost the automation of different industrial sectors by integrating 5G technology in collaborative mobile robots.

5G PILOTS is part of the National 5G Plan, a programme for the development of 5G technology pilot projects run by the public entity Red.es, promoted by the Ministry of Economic Affairs and Digital Transformation and co-financed by the European Regional Development Fund (ERDF), with a budget of 10 M€.

The project includes a total of 15 use cases developed by the different members of the joint venture, including Robotnik. In the institutional event held last Monday 14th, all of them were presented and 3 specific demonstrations were carried out, including the two use cases in which Robotnik participates.

Mobile robotics and 5G in Spain

The two cases using 5G and robotics technology in Spain, in which Robotnik participates are:

1. Use Case 6: Robotics - Remote Fleet Management of AGVs.

This 5G and Robotic technology case is implemented in two pilots in industrial manufacturing plants (both indoor and outdoor). The first one is FERMAX, where the RB-VOGUI robots will perform a task of supplying production points from the warehouse (indoor transport) and the second one is FAURECIA, where the robot will perform a task of transporting airbag racks. Up to now, work is being carried out on the design of the transport trolleys and the robot-to-trolley docking system to carry out the transport, on the indoor and outdoor location and navigation system (3D SLAM), on the user interface and on the implementation of a fleet manager in the cloud, which will later be tested on the edge.

robot móvil

As soon as 5G connectivity is available on the UPV Campus, the first communication, fleet management and telecontrol tests of both use cases will begin, as well as preliminary operational and validation tests prior to the implementation of the pilots.

2. Use Case 7: Robotics - Remote Inspection.

The inspection robotics use case focuses on the autonomous inspection of electrical substations and catenary for FGV (Ferrocarrils of the Generalitat Valenciana). Work is currently underway on the configuration of sensors and manufacture of the robot, on the programming and configuration of the robot for this application, on the organisation of a platform for data storage and on the integration of the 5G communications system with the remote inspection robot.

Partners in use cases 6 and 7

Robotnik provides robotic technology at hardware and software level for both use cases. Specifically, Robotnik provides a SUMMIT-XL robot (inspection) and a fleet of RB-VOGUI robots (Fleet Management System), as well as the software that includes among other modules such as the fleet manager, on-board software for localisation, navigation, mission management, HMI, etc.
Iteam is responsible for the development and integration of the 5G communications system based on Robotnik's hardware and software.

5G

Intel is Orange's partner in use case 6 (Fleet Management - AGVs) and provides cloud computing algorithms that process data obtained from its sensors.

Finally, Orange is the network provider and Huawei is the infrastructure hardware provider.

5G marks the future of collaborative mobile robotics and is a major breakthrough for the industry. Indeed, as discussed last year, 'the European Commission published a Recommendation calling on Member States to boost investment in very high capacity broadband connectivity infrastructure, including 5G, which is the cornerstone of the digital transformation and an essential pillar of the recovery. The timely deployment of 5G networks will offer significant economic opportunities in the coming years as it is a crucial asset for European competitiveness and sustainability, as well as an important enabler of future digital services.' As the official website reads.

What does 5G bring to mobile robotics? 

The inspection robotics and fleet management pilots are very representative examples where the introduction of 5G will play a disruptive role. It is an unbeatable framework to validate and test the capabilities of this new technology, which undoubtedly brings innumerable advantages for collaborative mobile robotics.

What 5G technology brings to autonomous service robots:

  • High bandwidth: required for data, video and audio streams, both for telecontrol and for cloud or edge processing.
  • Low latency and guaranteed latency: this opens up the possibility of teleoperation (and remote presence) to levels previously impossible. It also enables centralised fleet control, reducing computational needs on robots.
  • Cloud computing: the robot does not have to have large processing capabilities, it can rely on AI algorithms or sensor processing in the cloud, allowing for a cheaper, more versatile and easier to install, cheaper and less energy consuming product.
  • Much smoother and higher quality teleoperation:

With the pilots being developed, the aim is to validate the above advantages and measure the performance in real use cases.


industry 4.0

Robotnik in the recycling of electronic waste (E-Waste): HR-RECYCLER

The recycling of electronic waste (E-Waste) is currently the biggest threat to the planet, according to the Global Recycling Foundation.  

In fact, the United Nations recently warned that e-waste is considered to be the "fastest growing waste stream in the world"; we are actually talking about around 53 million tonnes per year (according to the UNU Global E-waste Monitor 2020 report, in 2019), which will increase considerably in the coming years, including toxic components and hazardous waste if not properly recycled.

The recycling of WEEE is a time and effort consuming process, due to the variety of devices to be recycled and the different components and materials they are made of. In the face of this reality, we, the industries, cannot remain on the sidelines. 

Robotnik wants to be part of the solution and therefore, we participate in HR-RECYCLER, a multidisciplinary project which aims to improve the recycling capacity of European countries.

Human-robot collaboration in the WEEE recycling process.

A key issue in recycling processes is the routing of raw and disassembled materials and components through the recycling plant. This is a resource-consuming process, as materials and components are processed in various parts of the factory. In a typical recycling process, unsorted devices arrive at the recycling plant in large trucks. After sorting, each device has to be transported to its recycling station where it is separated into its components. The components can be further separated or ready to be moved to their final destination.

This is where Robotnik comes in. Transporting materials within a factory has to be done affordably, efficiently and safely. Furthermore, with the advent of the fourth industrial revolution, mobile robots have to be able to operate in collaboration with humans sharing the same space.

How to make it affordable?

Affordability is achieved by providing a mobile robot capable of transporting the same baskets that the factory already has, which reduces the number of changes that need to be made in the factory.

How to make it really efficient?

Efficiency is achieved through state-of-the-art navigation algorithms, as well as factory planning algorithms in general. Collaboration is achieved through the use of human-aware navigation, but also by increasing communication between the robot and the human about the robot's intentions. Safety is achieved through the application of stringent measures, sensors and actuators that comply with the latest safety standards.

All this effort is directed by Robotnik towards the creation of a new robot: RB-ARES. Robotnik has developed a reliable solution that integrates robots, localization systems, configuration and programming tools (HMI) and Fleet Management System (FMS). This knowledge will be integrated into the new RB-ARES, which is able to carry up 

to 1.500 Kg. and make a completely autonomous navigation.

Application of the RB-ARES robot in in recycling.

The purpose of RB-AREs will be to pick and place EURO pallets at ground level and direct them through the factory with the required features of affordability, efficiency, safety and collaboration with people. To fulfil this mission, RB-Ares is equipped with state-of-the-art actuators and sensors.

 

RB-ARES is powered by ROS, as well as Robotnik's own technology for navigation, localization and human-machine interface, which allows easy configuration, programming and integration of the robot into different applications and fleet management systems, as is required by Industry 4.0. This is the main feature of Collaborative Mobile Robots like RB-ARES, an intelligent mobile robot that assists humans in a shared workspace and supports the optimisation of processes within the industry.

[1] World Economic Forum. (2019). A New Circular Vision for Electronics: Time for a Global Reboot, (January), 24. Retrieved from


dissasembly area

How to use MoveIT to develop a robotic manipulation application

European Commission funded HR-Recycler project aims at developing a hybrid human-robot collaborative environment for the disassembly of electronic waste. Humans and robots will be working collaboratively sharing different manipulation tasks. One of these tasks takes place in the disassembly area where electronic components are sorted by type into their corresponding boxes. 

An easy-to-use robotic manipulation platform

To speed up the component sorting task Robotnik is developing a mobile robotic manipulator that needs to pick boxes filled with disassembled components from the workbenches and transport them either to their final destination or to further processing areas. MoveIt is an open-source robotic manipulation platform that allows you to develop complex manipulation applications using ROS. 

Here, a brief summary showing how we used MoveIt functionalities to develop a pick and place application will be presented.

dissasembly area
Figure 1: Pick and Place task visual description.

Features and benefits of MoveIT

We found MoveIt to be very useful in the early stages of developing a robotic manipulation application. It allowed us to decide on the environment setup, whether our robot is capable of performing the manipulation actions we need it to perform in that setup, how to arrange the setup for the best performance, how to design the components of the workspace the robot has to interact with so that they allow for the correct completion of the manipulation actions needed in the application. 

Workspace layout

MoveIt allows you to build the planning scene environment using mesh objects previously designed in any cad program and allows your robot to interact with them. 

With MoveIt you can plan towards any goal position not only taking into account the environment scene by avoiding objects but also interacting with it by grabbing objects and including them in the planning process. Any MoveIt scene Collision Object can be attached to the desired robot link, MoveIt will then allow collisions between that link and the object, once attached the object will move together with the robot’s link. 

Figure 2: MoveIt Planning Scene with collision objects (green) and attached objects (purple).

This functionality helped us determine from the very beginning whether our robot arm was able to reach objects in a table with a certain height, how far away from the table should the robot position to reach the objects properly, is there enough space to perform the arm movements it needs to perform to manipulate objects around the workspace area. It also helped us design the boxes needed for the task, allowing us to decide on the correct box size that will allow the robot arm to perform the necessary manipulation movements given the restricted working area.  

Motion Planning

MoveIt includes various tools that allow you to perform motion planning to the desired pose with high flexibility, you can adjust the motion planning algorithm to your application to obtain the best performance. This is very useful because it allows you to restrict your robot’s allowed motion to fit very specific criteria, which is an application like ours, with a restricted working space where the robot needs to manipulate objects precisely in an environment shared with humans is very important.

Figure 3: Planning to the desired goal taking into account collisions with the scene.

One of the biggest motion requirements we have is the need for the robot arm to maintain the boxes parallel to the ground when manipulating them as they will be filled with objects that need to be carried between work stations. To plan using constraints can be easily done with MoveIt.

There are various constraints that can be applied, the ones we found more useful for our application are joint constraints and orientation constraints. 

  • With Orientation constraints you can restrict the desired orientation of a robot link, they are very useful to maintain the robot’s end-effector parallel to the ground, needed to manipulate the boxes properly. 
  • Joint constraints limit the position of a joint to be within a certain bound, they are very useful to shape the way you want your robot to move, in our application it allowed us to move the arm maintaining a relative position between the elbow and shoulder, performing more natural movements and avoiding potentially dangerous motions.
Figure 4: Motion Planning with joint and orientation constraints vs without.

Another useful MoveIt motion planning tool is to plan movements to a goal position both in Cartesian and in Joint Space, allowing you to switch between these two options for different desired trajectory outcomes.

  • Cartesian Space planning is used whenever you want to follow a very precise motion with the end effector link. In our application, we made use of these functions when moving down from the box approach position to the grab position and back again. Our robot has to carry the boxes with it, and due to limited space on its base area, all of the boxes are quite close together, using Cartesian planning we could assure we are maintaining verticality while raising the box from its holder avoiding latching between boxes and unnecessary stops. 
  • Joint Space planning is however useful to obtain more natural trajectories when the arm is moving between different grabbing positions making movement smoother. 
Figure 5: Motion Planning in Cartesian Space vs Joint Space.

This is just a brief summary of how we used MoveIt to develop a preliminary robotic pick and place manipulation application, there are still lots of different tools that MoveIt has to offer. Some of MoveIt’s most advanced applications include integrating 3D sensors to build a perception layer used for object recognition in pick and place tasks or using deep learning algorithms for grasp pose generation, areas that will be explored in the next steps. 

Stay tuned for future updates in the development of a robotic manipulation application using MoveIt’s latest implementations. 

Down below you will find a short demonstration of the currently developed application running on a Robotnik’s RB-KAIROS mobile manipulator.

https://www.youtube.com/watch?v=JgyDB57xjDw


How can a SUMMIT-XL STEEL make easier the development of your R&D?

Have you ever wondered how Robotnik can help the development of your R&D? If so, here's an example: the mobile platform SUMMIT-XL STEEL Robotnik is highly configurable. In it, a wide range of sensors can be integrated, actuators and robotic arms, making it an ideal robot for the development of industrial or R&D projects.

An example of this is the work of the IIT (Italian Institute of Technology), where the robot MOCA (Collaborative MObile robotic Assistant), born of the combination of the collaborative platform SUMMIT-XL STEEL and a Franca Emika arm.

With this robot, IIT has developed a case-study project to face the challenges of human-robot collaboration. The biggest advantage offered by collaborative robots lies in the opportunity to combine accuracy, strength and power of automation with flexibility, experience and cognitive abilities of humans.

ITT has implemented a strategy for navigation control to make the robot move in a virtual laboratory area, avoiding obstacles either static and mobile (including concurrent partners) and to reach the location of collaborative human partner.

The following video results are observed. As soon as the human subject is ready to perform the task, he/she slightly raises the arm holding the drill and the location of the subject in the workspace is automatically sent to MOCA, which starts to approach. At the end of the navigation phase, MOCA gets stopped before the subject at a predefined distance and collaboration phase begins.

https://www.youtube.com/watch?time_continue=31&v=6UPgc_5t8Rs

If you want further information about how Robotnik's robots can help you achieving your research and development projects’ goals, you can get in touch now with our experts in mobile collaborative robots and start configuring your platform or mobile manipulator .


Today we are present on Telecinco news!

And it is that in Robotnik we are very proud of our ELI autonomous shopping cart, which is showed today by the Telecinco news website in an article that talks about the shopping experience of the future and the big data, the artificial intelligence and products like our ELI shopping cart.

 

Read the full post here.

 


What is SWARM Logistics Assistant?

SWARM Logistics Assistant comes up from H2020 CPSwarm project. In it, Robotnik contributes with its knowledge in Cyber Phisical Systems. Robotnik has large experience in ROS, software used by all their robots, furthermore in the simulation software. The project has several mobile platforms from Robotnik, which are working to supporting the workers in tedious tasks in a warehouse.

The robots also make a scanner of the warehouse work space and share this information to updating the data base in real time. Likewise, the robots also collect additional information related to matters such as the ambient temperature, the presence of human beings, the detection of obstacles along the way, etc.

In the following video you can see the feasibility and effectiveness of the project:

 

 


The Robotnik I-SUPPORT project appears on CORDIS

CORDIS, the online platform of information dedicated to the research, development and innovation activities of the EU, has published an article about the I-SUPPORT project in which Robotnik has participated.

Rafael López, R&D Manager at Robotnik, led the I-SUPPORT team to develop an advanced, safe and independent system that can assist in tasks such as washing, scrubbing, rinsing, and getting to hard-to-reach body parts with easy-to-use commands through voice and intuitive gestures.

Read article→


The European project Bots2ReC aims the removal of asbestos from old buildings

 

Bots2Rec robots will reduce time and expense, in addition to minimizing human exposure to asbestos.

​The aim of Bots2reC is to validate a process for the automatic elimination of asbestos contamination in the rehabilitation of buildings. Nowadays, asbestos is present in many old buildings in Europe, although today it's prohibited because it's considered toxic. To do this removal work, a mobile robot manipulator with abrasive and suction tools is used. Its implementation will allow to reduce the cost and the time of the process as well as minimize human exposure to this construction material.

Robotnik and other six partners participate in this EU Horizon 2020 project.

More info:

Press

https://www.lavanguardia.com/vida/20180711/45833031849/expertos-crean-un-robot-autonomo-para-desmantelar-estructuras-de-amianto.html

https://innovadores.larazon.es/es/not/un-robot-autonomo-para-desmantelar-estructuras-de-amianto