angel soriano

Interview to Ángel Soriano, manager of R&D projects at Robotnik

Ángel Soriano is the manager of several R&D projects at Robotnik Automation, the leading Spanish company in collaborative mobile robotics.

For more than 5 years, Ángel, who holds a PhD in Automation, Robotics and Industrial Informatics, has been in charge of proposal writing, development and management of several European H2020 projects.

angel soriano

In this talk he tells us about some of the new developments in research in the field of mobile robotics or the close relationship between the work in R&D and the manufacture of robots and mobile manipulators in Robotnik. This is how collaborative mobile robotics is providing solutions today.

R&D Projects

Q. At Robotnik you dedicate a large part of your efforts to R&D work through projects that require mobile robotics solutions.
What value do you consider that R&D projects bring to the robotics sector?

A. These projects play a decisive role for the sector and drive research from the two most important points of view: on the one hand, the researcher who develops the technology beyond the current state of the art and, on the other hand, the industry or party interested in applying this technology in each specific use case is directly involved.
This synergy, created from the beginning of the project, directs and orients the research towards results that are tangible, demonstrable and applicable for the industry and interesting for the further evolution of the autonomous mobile robotics sector.

Q. At the moment, what are the European R&D projects that you coordinate within Robotnik?

A. At Robotnik we are involved in about 30 R&D projects of different nature where we are mainly in charge of the development of robotic platforms and related technology. I personally, participate in the development of several of the projects that Robotnik has open, most of them are European projects within the H2020 framework, but I am in charge of coordinating 4 of them:

FASTER: the objective is to address a series of challenges that arise in dangerous situations for human teams working in emergencies. It is a project oriented to offer and apply new technologies such as aerial and ground robots for rescue operations carried out by emergency teams in cases such as earthquakes, floods or closed buildings.

faster
RB-CAR | FASTER

ODIN: this project is oriented to the integration of technologies for hospital services, mainly through Artificial Intelligence. Here, autonomous mobile robots will provide services ranging from logistics support to interaction with patients and staff.

BACCHUS: we have seen how the incorporation of mobile robotics in agriculture has made significant progress in recent years. BACCHUS seeks to automate high-precision selective harvesting by means of mobile manipulation robotics, trying to imitate the same mechanics performed by an operator, i.e., using two coordinated arms for harvesting.

ODYSSEUS: this is one of the most recent projects we have entered into and is still at a very early stage. It is a safety project aimed at detecting gases or highly explosive elements through the use of sensorized UGVs specifically for this purpose.

 

Q. Autonomous mobile robots play a key role in all these projects. Tell us about some of the Robotnik robots involved and what exactly they contribute.

A. The RB-CAR in FASTER is a vehicle oriented for outdoor rescue operations that can navigate autonomously by GPS to explore unknown areas, create in real time a 3D map of the environment and stream the different sensors it incorporates -thermal camera, stereo camera or 3D Lidar- to the control station where the vehicle operator would be located. In addition, it can accommodate two crew members and can be driven manually.

One of the features is that the vehicle initially stores a secure GPS position, where the control station would be installed, and can be driven while testing the environment. Once something of interest is found, the driver gets out of the vehicle to attend to the situation in question and can send the autonomous robot back to the safe position where it started, i.e. acting as a mule vehicle transporting materials from one point to another.

SUMMIT-XL is another of the autonomous robots participating in FASTER.  Being a smaller vehicle than the RB-CAR, it is oriented towards indoor exploration, although it has also been used in outdoor scenarios. The SUMMIT-XL also offers autonomous GPS navigation and 3D mapping while streaming video from the built-in thermal and steerable RGB cameras.

SUMMIT-XL
SUMMIT-XL | FASTER

At ODIN we use the RB-1 BASE platform. It is one of the indoor mobile robots in charge of moving autonomously around the hospital for transporting goods, monitoring instruments or interacting with staff.

We also have the RB-VOGUI XL robot at BACCHUS which is a bi-arm robot, the RISING at ODYSSEUS....

 

Q. You mentioned that since 2002 Robotnik has been part of more than 60 research projects at the European level. What are the main challenges facing mobile robotics/manipulation in these R&D projects?

A. Autonomous robotics advances as its technological context does. Right now we are in a super interesting moment where 5G, Artificial Intelligence, augmented reality or 3D navigation, for example, allow important progress for robotics. 

In my opinion, these are the 3 main challenges we are facing in project development:

  • Dynamic and unpredictable environments. This is one of the most critical factors when offering a solution applicable to different scenarios or use cases. Here, mobile robotics goes hand in hand with AI.
  • Sensing technology is advancing rapidly but does not yet offer solutions with the precision required for some applications.
  • The technology transition gap between the research community and end users. It is complicated today to offer products or results of these projects that are within the reach of the knowledge and usability of a non-expert user in the field. There is still a long way to go to relax the usability gap between the technology provider and the end user.

By sectors

Q. Collaborative robotics applications have become a determining factor for the growth of companies in different sectors. For example, what is the contribution of robotics in the logistics sector?

A. In indoor logistics, the autonomous organization of warehouses and the internal transport of goods is the order of the day. In addition, the innovation lies in the fact that mobile vehicles that used to move along a fixed track within an assembly line, e.g. Autonomous Guided Vehicles (AGVs), are now Autonomous Mobile Vehicles as developed and manufactured by Robotnik, so they can move freely on the ground, can modify their trajectory and offer greater flexibility. This means that the customer does not need to modify the environment or install anything in particular to do so.

In this field, the fleet of heterogeneous robots that can autonomously coordinate with each other to perform tasks optimally is one of the most in-vogue research at the moment.

RB-1 BASE

One of the most popular robots aimed at indoor environments is the RB-1 BASE. A differential robot that can navigate autonomously moving shelves or goods with a payload of up to 50 kg.

Outdoor logistics is where we find the greatest advances in recent years in terms of the application of mobile robotics. We can already see in operation applications oriented to the last mile -such as AUDERE- with autonomous robots transporting goods or packages during the last part of the route or short journeys for tasks such as picking up garbage, delivering packages, picking up fruits...

The RB-VOGUI platform is one of the most widely used mobile robots in outdoor logistics. It can navigate autonomously and, with a manipulator arm mounted on top of the base, it is able to interact with objects in the environment, picking up garbage from the ground or samples of interest. 

There are other topics, such as road freight transport, where there is still some way to go, although it is true that research is working on it, so results will certainly be obtained in the near future. 

AUDERE
RB-VOGUI | AUDERE

 

Q. And what about the security and defense sector?

A. In this case, robotics tries to offer tools that mitigate the dangers faced by people working in these sectors with two main ideas. On the one hand, sending the robot to the critical scenario first rather than the human, basically because if something goes wrong, it affects the robot and not the human. And on the other hand, to work in the affected area trying not to contaminate it.

 

Q. You also mentioned earlier the great advances that have been made in the agricultural sector.

A. Automation in the agricultural sector is not really new, there are many large machines, trucks, tractors with specialized machinery for harvesting fruits and vegetables.

But the results of these machines cannot be compared with the work done by the operators who are specialized in the field. The operator knows just by looking at the fruit if it is ready to be picked or if it needs more time to be riper. Or which grape is the best for wine production.
This is the birth of precision agriculture in which robotics offers many advantages.
Apart from the obvious advantages such as working without human supervision or working at night, the main idea is to provide autonomous robots with the ability to identify, as humans do, the best option to act with the environment.

As I said before, within the BACCHUS project, the RB-VOGUI XL mounts two manipulator arms to harvest autonomously as a human would. Using one arm as the hand that holds the scissors and cuts the bunch and in the other the final effect that has to act as a hand, picking up the whole bunch.

RB-VOGUI XL | BACCHUS

Ángel Soriano has participated, presented and defended papers in several national robotics conferences such as the annual Jornadas de Automática organized by the Comisión Española de Automática (CEA), and international conferences such as the IEEE International Conference on Robotics and Automation (ICRA) or The World Congress of the International Federation of Automatic Control (IFAC), among others. Author of book chapters in Advances on Practical Applications of Agents and Multi-Agent Systems and Distributed Computing and Artificial Intelligence. Author and co-author of several articles published in high impact international journals such as Robotics and Autonomous Systems, IEEE/ASME Transactions on Mechatronics or Sensors. He has been a researcher at the Polytechnic University of Valencia for more than 5 years, associated with several research projects of the national plan of the Ministry of Economy and Competitiveness. He has been a senior technician in the Robotics Laboratory of the Institute of Automation and Industrial Informatics of the Polytechnic City of Innovation and has been an associate professor at the Department of Systems Engineering and Automation of the Polytechnic University of Valencia for more than 2 years. 


robot safety

All that Robotics brings to Security & Rescue

  • Robotnik is currently involved in 5 projects focused on the security and rescue sectors.

Robotnik focuses a significant part of its work and resources on R&D projects related to the automation and digitalization of industry through robotic applications

Since 2002, Robotnik has been involved in more than 60 projects, most of them at European level and others at local level,

30 projects are currently on progress, each of them of different nature: some of them with objectives oriented to logistics, health sector, or agri-food, among others.

This post compiles 5 of the open robotics projects related to public safety and rescue. 

R&D in Europe

One of Europe's main challenges is to promote research and development within companies, as it is the key to the competitiveness and productivity of each economic sector in the long term. For this reason, there are official funding programmes such as Horizon 2020 that provide support in this regard.

In particular, R&D in robotics technologies has become more important than ever in recent years. There is hardly any country that does not invest - both at company, government and institutional level - in robotics.

This increase in investment is due to several factors, for example, the huge development of some of the catalysts of robotics such as 5G or Artificial Intelligence, which provide an ideal framework, with connections and capabilities that did not exist before.

What are security R&D projects?

Perhaps there is a greater lack of knowledge about research and innovation in this area, but there is much that mobile robotics is contributing to this field. Ministries of Defense, institutions focused on rescue or emergency operations, civil protection, law enforcement and the sectors that work for public safety in general, have their sights set on the advances that this technology represents.

There are different forms of insecurity that can affect citizens, 'be it crime, violence, terrorism, natural or man-made disasters, cyber-attacks or abuses of privacy, and other forms of social and economic disorder'. European Commission.

The projects in which Robotnik is involved aim to understand, detect, prevent, deter, prepare and protect against security threats.

The following points, taken from the European Commission's own website, perfectly summarize the activities that this research framework focuses on:

- Fighting crime, illegal trafficking and terrorism, including understanding and combating terrorist ideas and beliefs;

- Protecting and enhancing the resilience of critical infrastructures, supply chains and transport modes;

- Strengthening security through border management;

- Improve cyber security;

- Increase Europe's resilience to crises and disasters;

- Ensuring privacy and freedom, including on the Internet, and improving society's legal and ethical understanding of all areas of security, risk and management;

- Improve standardization and interoperability of systems, including for emergency purposes;

- Supporting the Union's external security policies, including conflict prevention and peace-building.

Following this contextual framework, the following are the security and rescue projects in which Robotnik is currently involved:

CREST

Fight crime with an autonomous platform with an advanced prediction, prevention, operation and investigation platform leveraging the IoT ecosystem.

Robotnik, as a hardware supplier, is developing a new UGV (unmanned ground vehicle) concept capable of autonomously deploying a small UAV (unmanned aerial vehicle) in the field.

  • Threat detection and assessment.
  • Dynamic mission planning and adaptive navigation for improved surveillance based on autonomous systems.
  • Distributed command and control of law enforcement missions.
  • Sharing of information and exchange of digital evidence based on blockchain.
  • Delivery of pertinent information to different stakeholders in an interactive manner tailored to their needs.

RESPOND-A

It aims to develop holistic and user-friendly solutions for first responders. Robotnik is responsible for the development of robots for hazardous environments and support missions and participates in the development of interfaces between emergency robots and the command-and-control application.

  • Equipment tools and mission-critical strategies for First Responders
  • Augmented and Virtual Reality
  • Passive and active localization and tracking
  • Interactive multi-view 360º video streaming.
  • Autonomous robot and unmanned aerial vehicle coordination.

ROBORDER

Border authorities and law enforcement agencies (LEAs) across Europe face significant challenges in the way they patrol and protect borders. ROBORDER aims to develop and demonstrate a fully functional autonomous border surveillance system with unmanned mobile robots including aerial, water surface, underwater and land vehicles.

Robotnik, as a hardware supplier, is developing a new UGV (unmanned ground vehicle) concept capable of autonomously deploying a small UAV (unmanned aerial vehicle) in the field.

  • Autonomous swarm of heterogeneous Robots for BORDER surveillance.
  • Fully-functional autonomous border surveillance system with unmanned mobile robots including aerial, water surface, underwater and ground vehicles, capable of functioning both as standalone and in swarms.
  • Detection capabilities for early identification of criminal activities and hazardous incidents.

INTREPID

The aim here is to provide first responders with a new approach to accelerate the exploration and assessment of hazardous sites, enabling a rapid and effective response. To revolutionize first responder operations in the early stages of a disaster when the chances of saving lives are greatest and operations are slowed down by many types of uncertainties.

Robotnik's role in the project is to design and develop an intelligent unmanned ground vehicle (UGV) capable of performing exploration missions through rugged terrain or complex indoor locations.

  • Reconnaissance and Assessment in Perilous Incidents.
  • A quick response is key in order to save lives and minimize environmental damage.
  • Develop a platform that will allow first responders to safely explore the scene, analyze and assess the existing threats and decide, based on reliable information about the situation, on the next steps to take.
  • Use cybernetic assistants (smart autonomous vehicles) to enhance the speed, range and effectiveness of complex site exploration.

FASTER

FASTER will provide innovative, accepted and efficient tools that enhance the capabilities of first responders in terms of situational awareness and communication.

Robotnik is the leader of the project's Work Package 5: "Autonomous Platforms". It involves the development of a new RB-CAR vehicle and also a SUMMIT-XL robot. They will be used by first responders to explore and check the environment and also to transport some heavy materials.

  • Tactical situational awareness providing innovative visualization services for a portable Common Operational Picture for both indoor and outdoor scenarios representation.
  • Data collection providing a secure IoT platform for distributed.
  • Resilient communication at the field level providing haptic communication capabilities, communication with K9s; and at the infrastructure level through 5G technologies and UAVs.

inspection robot


robotics r&d

Robotnik at DECENTER: Mobile robotics + artificial intelligence

Interview PhD- Decenter Project Coordinator.

Artificial Intelligence is a technology in constant evolution and its possibilities and influence in different areas is really wide. There are numerous AI applications related to mobile robotics that have a direct relationship with different industrial sectors. 

All these applications, as well as the habits of today's society, make it necessary to focus our attention on one key point: What do we do with the huge amount of data we generate? 

Robotnik is part of DECENTER, a European project within the H2020 program whose aim is precisely to manage, protect and process this data efficiently and securely. 

Ángel Soriano, responsible for Robotnik in this project, tells us a little more about DECENTER, telling us how it has evolved since its inception, at what stage are the objectives, the conclusions they draw and more.

 

1. Starting the conversation, could you give us a summary of what exactly DECENTER consists of?

DECENTER is a project that aims to provide an infrastructure that facilitates the integration and deployment of their services or applications to Artificial Intelligence and Cloud&Edge computing oriented software developers.

The project contemplates 3 different profiles:

  1. Programmers and architects oriented to distributed computing or edge/cloud computing management.
  2. Developers focused on AI algorithms, which normally require large computational capacity and memory.
  3. Operators or technical staff responsible for the proper functioning and integration of the software deployed on the available hardware.

 

 

DECENTER is intended to make it easier for the technician to integrate AI processes and/or algorithms into the system already deployed in their factory, and also to process them on the edge or in the cloud.

An example: we have a professional who is dedicated to developing an algorithm that is able to identify robots in a photograph. On the other hand, we have a worker-operator who knows his system, who is able to take that photograph, but is not a specialist in Artificial Intelligence. How can he integrate the advantages offered by AI without needing to specialize in it?

DECENTER aims to create these connections and distribute the computation (these algorithms require a lot of computing power) at different levels. 

A local level would be to run it inside the same computer that takes the picture. 

A level above that would be to run it on a computer that is not the same as the one taking the picture, but is within the same region or relatively close (Edge).

And a level above that would be to run it in the cloud.

By playing with these 3 levels, the project offers a platform that facilitates this integration and communication.

 

What role does Robotnik play in the project?

Everything explained above applies to 4 use cases that are defined in the project. Robotnik is a supplier of one of the use cases of the project: robotics logistics.

When a robot is performing its autonomous tasks navigating through the warehouse, it has to make certain decisions based on unforeseen events, such as encountering obstacles blocking its path. On certain occasions, if the robot is not able to identify what the obstacle is, the safest option is first for the robot to stop immediately and then to stop: 

  • Either that the robot remains static waiting until the obstacle disappears to ensure that there is no risk of collision. 
  • Or for the robot to re-plan its trajectory to reach its target from another location and try to avoid the obstacle. 

This is a very common situation in fleets of collaborative mobile robots as they often share workspace with each other and with workers in the same warehouse. 

DECENTER opens up the possibility of applying obstacle identification through AI. 

 

 

Robotnik provides the robots and all the infrastructure, as well as developing the integration of the DECENTER platform within the robot and the structure that we already had and thanks to this service offered by the partner and the project, we have been able to branch out the options for managing fleets of robots in warehouses.

 

2. At this point, which of the objectives set have been met and in which aspects will it be necessary to continue working on?

An example of an objective achieved in the specific use case of Robotnik is: we set out to be able to identify another robot with a confidence level of more than 80% and to reduce the CPU usage of robots by 10% by deriving computation to the edge/cloud. Both objectives have been successfully achieved.

 

3. What does this project mean for Industry 4.0?

There are several things that DECENTER brings to Industry 4.0 directly. One of them is the management of computing: being able to route and manage computing between devices. Distributed computing is something that is now the order of the day and it's purely cutting edge. We even talk about doing it in an intelligent way based on objectives or priorities. 

In Robotnik we design and manufacture mobile robots. If we want a robot to run a very heavy algorithm and with a lot of computational capacity (this happens in many occasions: high resolution cameras, LiDAR that captures 320.000 different points every second...), we must enable it to do so.

The straightforward solution is for the robot's CPU to be very powerful, which usually means it is more expensive. However, with the ability to delegate computation, you have the possibility to send all that data using communication with other devices or the cloud, compute the data there and apply the returned result to the robot.

This reduces costs from the point of view of robot production, makes the system more intelligent as it reduces the electrical consumption of the robot, optimises energy and in general optimises resources.

 

4. Taking into account both large companies and SMEs, what is the biggest challenge for the real application of Artificial Intelligence in industry?

The biggest challenge is undoubtedly that AI is constantly evolving and expanding and its integration in industry requires specialized personnel. Currently there is a gap between the specialized AI community and the personnel involved in the industry who have to deal with the problems of their own industry.

DECENTER tries to bring the two profiles together so that industry can benefit from the application of AI without the need to be an AI specialist.

 

 

 

There is another technological challenge involved in applying the DECENTER methodology in a real industry application, communications. When computing is delegated between devices, and these devices require a certain real-time processing speed, communication between devices needs to be fast and secure. 

At DECENTER we have worked at several levels: 

EDGE. Here you do not need internet to communicate with another device and it is considered a much faster level in terms of communications than the cloud.

The cloud. Here you do need an internet connection to access the servers and it is normally assumed to be slower than EDGE. 

Therefore, in general, communications is the great technological challenge of this methodology. Here we could also talk about 5G, which is another field in which Robotnik is actively participating in other projects.

 

5. Which use cases have had more impact or which sectors have shown interest in DECENTER's advances?

DECENTER is mainly related to data processing, its speed in data transmission and computational capacity. Computational resources. 

All projects have a development process in which use cases are always defined to demonstrate that the development is applicable to real applications. In the end, it is necessary to demonstrate in which areas of interest what is developed during the project will work.

In our DECENTER use case, the stakeholders are anyone who uses logistics robotics.

It can be interesting for any warehouse management, both for the savings it will bring to the company and for the technological and productive leap. 

During the DECENTER pilot, the RB-1 BASE was tested with very attractive results. Now I don't have individual robots, but I have a fleet of computers that 'help' each other to optimize processes, not only from a physical point of view, but above all from the data processing and execution of each one of them: if one of your robots is stopped loading, you can use the computer or PC of that robot to process data from the robot that is moving.


5G

5G and Robotics use cases in Spain

Robotnik is one of the partners that are carrying out the development of different pilot tests around 5G technology and robotics in Spain.

Robotnik, Orange, CFZ Cobots, Elewit, Visyon, Aracnocóptero or Etra, are some of the partners that are carrying out the development of different pilot tests around 5G uses in Valencia, Spain as part of the 5G PILOTS project. The aim is to boost the automation of different industrial sectors by integrating 5G technology in collaborative mobile robots.

5G PILOTS is part of the National 5G Plan, a programme for the development of 5G technology pilot projects run by the public entity Red.es, promoted by the Ministry of Economic Affairs and Digital Transformation and co-financed by the European Regional Development Fund (ERDF), with a budget of 10 M€.

The project includes a total of 15 use cases developed by the different members of the joint venture, including Robotnik. In the institutional event held last Monday 14th, all of them were presented and 3 specific demonstrations were carried out, including the two use cases in which Robotnik participates.

Mobile robotics and 5G in Spain

The two cases using 5G and robotics technology in Spain, in which Robotnik participates are:

1. Use Case 6: Robotics - Remote Fleet Management of AGVs.

This 5G and Robotic technology case is implemented in two pilots in industrial manufacturing plants (both indoor and outdoor). The first one is FERMAX, where the RB-VOGUI robots will perform a task of supplying production points from the warehouse (indoor transport) and the second one is FAURECIA, where the robot will perform a task of transporting airbag racks. Up to now, work is being carried out on the design of the transport trolleys and the robot-to-trolley docking system to carry out the transport, on the indoor and outdoor location and navigation system (3D SLAM), on the user interface and on the implementation of a fleet manager in the cloud, which will later be tested on the edge.

robot móvil

As soon as 5G connectivity is available on the UPV Campus, the first communication, fleet management and telecontrol tests of both use cases will begin, as well as preliminary operational and validation tests prior to the implementation of the pilots.

2. Use Case 7: Robotics - Remote Inspection.

The inspection robotics use case focuses on the autonomous inspection of electrical substations and catenary for FGV (Ferrocarrils of the Generalitat Valenciana). Work is currently underway on the configuration of sensors and manufacture of the robot, on the programming and configuration of the robot for this application, on the organisation of a platform for data storage and on the integration of the 5G communications system with the remote inspection robot.

Partners in use cases 6 and 7

Robotnik provides robotic technology at hardware and software level for both use cases. Specifically, Robotnik provides a SUMMIT-XL robot (inspection) and a fleet of RB-VOGUI robots (Fleet Management System), as well as the software that includes among other modules such as the fleet manager, on-board software for localisation, navigation, mission management, HMI, etc.
Iteam is responsible for the development and integration of the 5G communications system based on Robotnik's hardware and software.

5G

Intel is Orange's partner in use case 6 (Fleet Management - AGVs) and provides cloud computing algorithms that process data obtained from its sensors.

Finally, Orange is the network provider and Huawei is the infrastructure hardware provider.

5G marks the future of collaborative mobile robotics and is a major breakthrough for the industry. Indeed, as discussed last year, 'the European Commission published a Recommendation calling on Member States to boost investment in very high capacity broadband connectivity infrastructure, including 5G, which is the cornerstone of the digital transformation and an essential pillar of the recovery. The timely deployment of 5G networks will offer significant economic opportunities in the coming years as it is a crucial asset for European competitiveness and sustainability, as well as an important enabler of future digital services.' As the official website reads.

What does 5G bring to mobile robotics? 

The inspection robotics and fleet management pilots are very representative examples where the introduction of 5G will play a disruptive role. It is an unbeatable framework to validate and test the capabilities of this new technology, which undoubtedly brings innumerable advantages for collaborative mobile robotics.

What 5G technology brings to autonomous service robots:

  • High bandwidth: required for data, video and audio streams, both for telecontrol and for cloud or edge processing.
  • Low latency and guaranteed latency: this opens up the possibility of teleoperation (and remote presence) to levels previously impossible. It also enables centralised fleet control, reducing computational needs on robots.
  • Cloud computing: the robot does not have to have large processing capabilities, it can rely on AI algorithms or sensor processing in the cloud, allowing for a cheaper, more versatile and easier to install, cheaper and less energy consuming product.
  • Much smoother and higher quality teleoperation:

With the pilots being developed, the aim is to validate the above advantages and measure the performance in real use cases.


industry 4.0

Mobile robots and safety: the experience of Robotnik in HR-RECYCLER project

Collaborative robots have come front and center on the international stage as they’ve become widespread in Industry 4.0. Today we have more powerful, more advanced and more productive robots, so safety has become a key element.

Safety is the key

For Robotnik, as an experimented robot manufacturer and within the collaborative environment of the HR-Recycler project, this aspect is especially important since humans and robots will be working side by side. The solution proposed to routing materials inside a factory has to be done in a safe manner, in this case, the robots designed are the RB-KAIROS+ (mobile robotic manipulator) and the RB-ARES (pallet truck). It’s really important how the mobile robots  will show the intention of motion, elevate or manipulation.  

industry 4.0

 

To ensure the correct operation within the complex framework of this project, Robotnik has equipped its robots with sensors and signalers that allow the robot to proceed safely and show its intentions in advance. 

There are a number of ways manufacturers can introduce safety measures in their automated operations. The type and complexity of these safety measures will vary by the robotic application, with the aim to make the mobile robot safer, there are certain safety rules and standards that these collaborative robots must comply with, in Europe are found in EN ISO 3691-4:2020 and ISO 12100:2010 6.4.3

rb-ares mobile robot

Clarifying the ISO standard

This post aims to give to the reader a brief description about what, why and how all the premises of the ISO will be reached.

First of all, what does the normative include? The standards on warning systems say:

  1. When any movement begins after a stop condition of more than 10 seconds, a visible or acoustic warning signal will be activated for at least 2 seconds before the start of the movement.
  2. A visible or acoustic warning signal will be activated during any movement.
  3. If the human detection means are active, the signal will be different.
  4. When robots change their direction from a straight path, a visible indication will be given of the direction to take before the direction changes in case that the robot is driving autonomously.
  5. When the lift is active, there must be special signage.

The solution proposed is a two-steps software that will manage the signals of the robot, explained after the diagram and on red cells:

The robot_local_control is a manager node, it has information about the status of the whole robot, that is, status of the elevator, goal active, mission ended, etc. On the right side, a group of nodes that manages the movement of the robot with a level of priority:

  • Robotnik_pad_node:  The worker uses a PS4 pad to control the robot and this node will transmit the orders, non autonomous mode. 
  • Path planning nodes: like Move_base, it controls the robot and we speak of it as autonomous mode.

Robotnik has installed on its mobile robots  two ways to alert facility users, acoustic devices or light indicators through the acoustic_safety_driver and leds_driver.

industry 4.0

As you can see, there are two steps to link the top and bottom parts, a node to transform the movement into signals to show the intention of the robot and another one to orchestrate the both signal types and manage the requirements of the normative. 

The turn_signaling_controller aims to solve the first and the fourth requirements of the normative depending on the robot mode (autonomous or not autonomous). 

In non autonomous mode, and as the norm says, the motion depends on an appropriately authorised and trained personnel so it is enough to show that the robot is moving by reading the movement command and checking the velocity applied. 

In autonomous mode the robot navigates to a goal point through a path calculated by the planner, furthermore it manages the AGV to avoid obstacles dynamically and for this reason it is important to alert workers every moment.

What is the process?

This is a very brief description of the function, it bears the plan in mind and recalculates at the same time that the planner does just to be able to show the most up-to-date prediction of motion.

Last but not least, the robot_signal_manager aims to solve the rest of the problems since it has access to the robot status, it shows a light signaling or an acoustic signal 2 seconds before the motion, it gives priority to the emergency signals (consistent with the behaviour of the robot, red signals means that the robot will be stopped) and the signals that are not exclusive are showed using beacons or acoustic signals.

The occupied zone is one of the non exclusive signals, robots have some extra beacons that blinks on red when there is something on the protective zone (close to the intention of motion of the robot, inside the critic zone) and on yellow when there is something on the warning zone (near the protective zone).

 

Summarizing

Safety is not only stopping the robot or avoiding a crash when human-robot collaboration takes place. With the development of these nodes Robotnik aims not only to decrease the probability of accident or comply with the safety ISO premises, but also to help workers feel more comfortable with the mobile robot’s decisions and bring human-robot collaboration closer, showing clear signals about how the robot will perform.


industry 4.0

Robotnik in the recycling of electronic waste (E-Waste): HR-RECYCLER

The recycling of electronic waste (E-Waste) is currently the biggest threat to the planet, according to the Global Recycling Foundation.  

In fact, the United Nations recently warned that e-waste is considered to be the "fastest growing waste stream in the world"; we are actually talking about around 53 million tonnes per year (according to the UNU Global E-waste Monitor 2020 report, in 2019), which will increase considerably in the coming years, including toxic components and hazardous waste if not properly recycled.

The recycling of WEEE is a time and effort consuming process, due to the variety of devices to be recycled and the different components and materials they are made of. In the face of this reality, we, the industries, cannot remain on the sidelines. 

Robotnik wants to be part of the solution and therefore, we participate in HR-RECYCLER, a multidisciplinary project which aims to improve the recycling capacity of European countries.

Human-robot collaboration in the WEEE recycling process.

A key issue in recycling processes is the routing of raw and disassembled materials and components through the recycling plant. This is a resource-consuming process, as materials and components are processed in various parts of the factory. In a typical recycling process, unsorted devices arrive at the recycling plant in large trucks. After sorting, each device has to be transported to its recycling station where it is separated into its components. The components can be further separated or ready to be moved to their final destination.

This is where Robotnik comes in. Transporting materials within a factory has to be done affordably, efficiently and safely. Furthermore, with the advent of the fourth industrial revolution, mobile robots have to be able to operate in collaboration with humans sharing the same space.

How to make it affordable?

Affordability is achieved by providing a mobile robot capable of transporting the same baskets that the factory already has, which reduces the number of changes that need to be made in the factory.

How to make it really efficient?

Efficiency is achieved through state-of-the-art navigation algorithms, as well as factory planning algorithms in general. Collaboration is achieved through the use of human-aware navigation, but also by increasing communication between the robot and the human about the robot's intentions. Safety is achieved through the application of stringent measures, sensors and actuators that comply with the latest safety standards.

All this effort is directed by Robotnik towards the creation of a new robot: RB-ARES. Robotnik has developed a reliable solution that integrates robots, localization systems, configuration and programming tools (HMI) and Fleet Management System (FMS). This knowledge will be integrated into the new RB-ARES, which is able to carry up 

to 1.500 Kg. and make a completely autonomous navigation.

Application of the RB-ARES robot in in recycling.

The purpose of RB-AREs will be to pick and place EURO pallets at ground level and direct them through the factory with the required features of affordability, efficiency, safety and collaboration with people. To fulfil this mission, RB-Ares is equipped with state-of-the-art actuators and sensors.

 

RB-ARES is powered by ROS, as well as Robotnik's own technology for navigation, localization and human-machine interface, which allows easy configuration, programming and integration of the robot into different applications and fleet management systems, as is required by Industry 4.0. This is the main feature of Collaborative Mobile Robots like RB-ARES, an intelligent mobile robot that assists humans in a shared workspace and supports the optimisation of processes within the industry.

[1] World Economic Forum. (2019). A New Circular Vision for Electronics: Time for a Global Reboot, (January), 24. Retrieved from


Bots2ReC, robotic extraction of asbestos fibres from buildings

Europe has paid a high price for asbestos, with over 100 000 related deaths. First in line in the fight to free buildings from asbestos contamination, workers in the construction sector could soon find a helping hand in the form of an AI-piloted robotic system.

The constant and multifaceted evolution of society has left very few industries unchanged. For most sectors, this has meant moving towards increased automation. Most, but not all. One unyielding sector has largely stayed true to its old ways: the construction sector. For the past 200 years, the same repetitive, standardised, and physically challenging construction tasks have been performed by workers with their own two hands. But this could change soon thanks to projects as Bots2ReC (Robots to Re-Construction). The reasoning behind Bots2ReC is simple: some tasks are simply too hazardous for humans to perform, and machines could easily replace them. “Besides the exposure, some processes or the materials handled in those processes generate health hazards in the form of dust, vibration, noise or toxic substances. It is precisely for these tasks that we could expect great benefits from – and also show the massive potential of – automation to achieve sustainable socio-ecological improvements,” says Tobias Haschke, coordinator of the project on behalf of RWTH Aachen University.

Tailored to construction sector needs

To enable such automation, the project consortium first had to overcome barriers related to the nature of the construction sector. Whereas most industries manufacture in a defined environment, the construction industry has historically had to cope with a continuously changing environment with varying rules and procedures. As Haschke explains: “The key to success lies in the technical control of this constant change.” Recent developments in computer science, storage systems and sensors were key enablers that set Bots2ReC in motion. They enabled the introduction of semi-autonomous solutions through mobile handling of environment complexity. Over a span of 3 years, the project team developed a robotic system capable of handling asbestos removal on construction sites. “The robot operates asbestos removal comprehensively and not just piece by piece. Thanks to its AI capabilities, it is also tailor-made to be used under real conditions,” Haschke explains. “The AI combines a tailored lightweight data format for environmental representation with a complex planning module. As a result, it can provide a scalable system in terms of fleet size and it automatically adapts to the floor plans at hand”. Most tests of the Bots2ReC were carried out with a grinding disk to reflect the actual process of asbestos removal. This helped the team understand and subsequently control the complex mechanisms of such interaction. Furthermore, the system was examined for its suitability for use in normal residential buildings, and tested in various room and floor plan constellations. The results are promising, with basic accessibility reaching almost 90 % of the wall surfaces of a general dwelling. A direct comparison to manual work is still pending and will be implemented in the follow-up of the project.

The greatest achievement

“To me, our greatest achievement is the robot itself. Its design and mode of operation are tailored to the requirements of the construction industry, and its design method is unique. This is reflected in the processable ceiling height of 3 m, which is simultaneously paired with an arm payload of 20 kg and continuous power supply via the mobile, omni-directional tandem system,” Haschke explains. The project has already generated attention in the construction industry, both for its complete robotic system and for its components.

mobile robot

Although Bots2ReC was completed in November 2019, the team has been investigating further developments of grinding processes, planning logic and radar technology since then. These are already in demand and should be commercialised within the next 2 years. “We are especially proud of the products that have been decoupled during the project and are already available on the market in the form of two mobile robots at Robotnik Automation (RB-2 BASE and Summit XL Steel),  and various improved radar sensors from indurad GmbH,” Haschke notes. With its focus on asbestos, Bots2ReC is well placed to reduce the future health burden on workers. There is little doubt that the cost of the technology will easily be counterbalanced by its high social benefit and economic efficiency. The project could be adapted for the removal of other hazardous products, such as lead paint.


Robotnik and Itera collaborate in the development of the "Symphony"

Research and development of intelligent technology management system with multifunctional capabilities for operational improvement in the industry project. Supported by the Valencian Agency of Innovation, the objective of this project is the development of the technologies necessary to have robots and mobile manipulators easy to integrate and use. These technologies include advanced robot and operator location systems, cloud fleet management and planning systems, new quality control systems and parameter calibration. This project has been supported by the AVI (Valencian Agency of Innovation) and has the collaboration of the technological institutes Ai2 (Industrial Automation and Computing) and ITI (Technological Institute of Informatics).

 


BADGER project, the autonomous underground robotic system

Robotnik participates at the BADGER project, whose goal is the design and development of the BADGER autonomous underground robotic system that will be able to drill, manoeuvre, localise, map and navigate in the underground space, and which will be equipped with tools for constructing horizontal and vertical networks of stable bores and pipelines.

The proposed robotic system will enable the execution of tasks that cut across different application domains of high societal and economic impact including trenchless constructions, cabling and pipe installations, geotechnical investigations, large-scale irrigation installations, search and rescue operations, remote science and exploration, and defence applications.

Robotnik will be the main actor within work package involving Robotic system design and hardware development, plus the overall system integration. This task will focus in the integration of the main locomotion units, propulsion (for driving control along the tunnel) and directional (for steering control).


robotics in food industry

Precision viticulture takes another step thanks to the Vinbot project

The European project VINBOT, based on precision viticulture, has just finished after three years of intense work.

The VINBOT robot is based on the mobile autonomous platform SUMMIT XL and the main objective of it is to optimize the performance management and the quality of the wine.

This has been made possible thanks to the wide sensing that the robot is equipped with and has allowed it to capture and analyze images of vineyards and 3D data through the use of cloud computing applications.

VINBOT emerges as a response to the need to boost the quality of European wines through the application of precision viticulture. The project, which has successfully completed, will allow wineries and winemakers to be able to make accurate predictions of the performance of their vineyards. Once this is done, the production and marketing of the wines can be favorably organized.

https://www.youtube.com/watch?v=DZXmBPOiEfQ