ROS CONTROL, an API to control them all

ROS has been one of the greatest advances of the robotics industry in the past years. Its development began as a way to help the development of robot applications, easing the communication between sensors and algorithms, following the paradigm of “program once, test everywhere”.

This has been the pattern of the last years, and ROS has performed extremely good in that way. For example, you could code an algorithm to take an image as its input, without caring about which model, resolution or connection type, as long as it was supported by ROS and adopted its API.

But this focusing on the high level layer of application development led to an unthinkable oblivion: How was the access to actuators managed? How were the references of the actuators calculated? As in the case of high level applications, where the end user shouldn’t care about the source and destination of the data used and produced by him, in the case of robot control the user shouldn’t care about which type of actuators are used by a robot.

But today, this is not the situation anymore. ROS Control is the API that has been developed by the ROS community to allow simple access to different actuators. Using this standard API, the controller code is separated from the actuator code. For example, one could write a new controller implementing a fancy control strategy, and test it on different hardware without changing a single line of code. Or one could test different control algorithm with same hardware to find the most suitable for its needs.

ROS Control has different features that make it really appealing: real time capabilities, that allows to run control loops at hundreds of hertz; a simple manager interface, that gives access to the actuators and handles resource conflicts; a safety interface, that knows the hardware limitation of the joints and ensures that the commands sent to the actuators are between their limits; and a set off-the-shelf controllers that are ready to be used.

Have you ever thought about the mapping between joint and actuator space? ROS Control already did it. Normally this mapping is one-to-one, i.e. one actuator controls one joint, and their movement is related by a gearbox, so you don’t need to do messy calculations. However, in case of more complex scenarios, e.g. when a differential transmission is used, ROS Control gives us an elegant solution through its transmission interface to cope with this problem.

What about mixing different robot components into one? This is a trend nowadays, where robot components are autonomous and usable on their own, but can also be assembled into a single functional system. In those cases, ROS provides high level coordination between the components, but with ROS Control this coordination is also achieved at the low level, extending the control possibilities to far and beyond, for example, with a more coupled control between a robotic arm and the tool attached to it.

Finally, the separation between controllers and actuators allows an interesting option: simulation. Gazebo, the standard robot simulator used by ROS, implements simulated ROS Control actuators, and one can write and test a controller even before it has the real robot available. This feature of ROS Control is used at Robotnik to test new kinematic configurations for its most edgy robots, allowing for quick prototype delivery.

ROS Control is one of the key parts for the domination of the robotic world by ROS. As a world leading company in the ROS community, Robotnik makes an extensive use of ROS Control to give its customers the best products available on the market.

Radio Project Eu progresa en el programa de vida cotidiana asistida por el entorno

Nuevo encuentro de partners del RADIO Project en Nafpaktos, Greece. Los grupos hacen sus pruebas en el nuevo laboratorio de vida cotidiana asistida por el entorno.

La casa AAL de unos 60 m2 está totalmente equipada para servir como laboratorio de pruebas para experimentación y evaluación de nuevas tecnologías para vida cotidiana asistida por el entorno.

Galería de fotos

Video concepto RADIO

RADIO Concept from roboskel on Vimeo.

ROS Components, porque robótica significa ROS

ROS Components es una división del grupo Robotnik Automation, empresa líder en Robótica de Servicio en Europa.

El crecimiento y potencial de los productos que hacen uso del software ROS, nos ha llevado a concebir este nuevo concepto de portal de venta online, en el que se ofrece toda la gama de productos de una forma clara y sencilla para el cliente. El usuario podrá encontrar toda la información técnica y el soporte necesario que precisa de un producto de forma unificada, en un sólo espacio: Ros Components.



En los últimos años, ROS se ha convertido en un estándar en la Robótica de Servicio, y está haciendo grandes avances en el sector industrial.

La mayor parte de robots y componentes en el mercado están soportados en ROS, pero a veces no es fácil averiguar cuáles lo están, qué versión soportan y cómo adquirirlos. Una de nuestros principales objetivos es enlazar los productos con sus controladores y/o software para ROS, detallar cómo se instalan y configuran y dónde se puede encontrar tutoriales o información de utilidad, entre otros aspectos. Todos los componentes que se ofrecen en la tienda están soportados por ROS o lo estarán en breve.

Desde ROS-Components pretendemos fomentar el uso de ROS así como su mantenimiento y crecimiento. Para ello, pretendemos donar parte de los beneficios obtenidos por la venta de nuestros productos a la OSRF. Así pues, cada vez que compres un producto en ROS Components, estarás aportando tu grano de arena al desarrollo y mantenimiento de ROS. Si estás interesado en colaborar con la organización, encontrarás más información aquí.

Por otro lado, desde ROS-Componentes pretendemos incentivar a la comunidad en el desarrollo, mejora y documentación de paquetes ( así como la colaboración en la solución de problemas relacionados con ROS (

La Comunidad ROS tiene un nuevo punto de encuentro en ROS Components!


ROS Components!


Robotic web applications

ROS is a great tool to develop new robotic applications. Its ease of use and its large amount of tools and wide community makes ROS a great way to start learning robotics, or to develop a state of the art industrial applications. In spite of all these advantages, one of ROS main limitations is that it must work on Linux systems, mainly Ubuntu. Linux and Ubuntu are increasing the number of desktop users, but nowadays the most used Operating Systems are Windows for desktop users, and Android for mobile. This makes hard to integrate applications when the end user has never used a Linux Ubuntu system, or its infrastructure is based on Windows or Android. This problem can be solved by developing robotic applications taking advantage of the ROS web framework. ROS web framework is a collection of open-source tools and modules, built around the Robot Web Tools project, with the goal of converge ROS with modern web and network technologies. This will create a broadly accessible environment for robot development and human-interaction research used over wide area networks.

Robot Web Tools uses WebSockets to communicate with ROS middleware, and offers several tools to help develop applications using rosbridge. The main front-end tools is the roslibjs package, that is a library to build ROS nodes using Javascript, and allows usage of ROS topics, services, goals, parameters and TF. ros2djs and ros3djs are used to create 2D and 3D visualization of the ROS environment, allowing to visualize maps, costmaps, grids, URDF models, InteractiveMarkers, PointClouds and other basic geometric shapes. This can be very useful to create your own navigation packages that can be controlled from any device.  Other useful tools are keyboardteleopjs, to move a robot using a simple keyboard interface, mjpegcanvasjs to visualize image topics, and speech_commands to control a robot using speech. Robot Web Tools also includes all necessary server nodes to interface the client-based modules with ROS. This nodes are  rosbridge_server, web_video_server, and tf2_web_republisher.

All these tools can help to solve the problem of the isolation of ROS in Linux systems, and allows the deployment of ROS applications on any device that can use a web browser (Mozilla Firefox, Google Chrome, Safari, etc … ) In the future we can expect more development of the Robot Web Tools project, for example with the addition of new communication standards, like WebRTC, that will help with applications demanding intensive and high-bandwidth streaming.

Robotnik Summit XL

Illustration 1: SUMMIT XL Web 3D visualization

Robotnik Turtlebot2

Illustration 2: Turtlebot web visualization

Robotnik Turtlebot2

Illustration 3: Turtlebot web map navigation