sistema de gestion de flota

What is fleet management in robotics?

Within the Industry 4.0 context, it’s common to see a factory with more than one autonomous mobile robot (AMR) performing different tasks in the production process.

When multiple AMRs are deployed, it requires a tool capable of managing the fleet of robots and optimizing their performance. This resource is the system that coordinates all the robots for the correct functioning of the fleet and the overall profitability of the operations they execute.

How to optimise the work of several mobile robots working together? or how to avoid downtime or production stoppages? and how to avoid interlocks between them?

The answer is a Fleet Management System (hereafter FMS). This article shows examples of the use of these systems in autonomous transport applications in logistics and intralogistics, where their use is currently most widespread, but also in other sectors.


Robotics Fleet Management

A Fleet Management System applied to vehicles is not the same as a FMS applied to automated robotics.

Many of those that are being sold commercially as FMS are really Fleet Monitor Systems because they are focused on fleets of vehicles that have a human driver, i.e. for fleets of non-autonomous or teleoperated vehicles.

With these monitoring systems you can know where the vehicle is at any given moment, receive certain status information (location, how much fuel is left, speed...) and return the order that the driver will execute.

Knowing where the autonomous robot is and what it is doing, but not being able to send or modify an order, means that the vehicle cannot be acted upon. Therefore, this is only for monitoring, not for management. For autonomous robotics, a further step is needed: robotic fleet management software.

Collecting relevant metrics or data and displaying them on a dashboard is only part of what the FMS offers as applied to the robotics sector, but it is not enough to be considered a robot fleet management.

What is robot fleet management system for?

The Fleet Management System is responsible for centralising the management of the robot fleet, allowing operators to act from several standard communication devices. In this way, the robots can be accessed from any location (office, warehouse, home...) and by any device (PDA, mobile phone, tablet, computer, ...).

FMS offers a higher layer of abstraction that allows interacting with the entire fleet of robots as if it were a single system. Different access levels can be defined so that it is possible to specify typologies of users, each of which will have certain privileges to interact with the system.

In addition, a user can define missions with different levels of detail. It is possible to assign a robot to a specific mission or let the intelligent system decide which robot in the fleet will be given the mission.

  • Capable of coordinating fleets of robots.
  • Can be deployed locally / in the cloud.
  • Graph based orchestration .
  • Monitors fleet status.
  • Customizable.

The Fleet Management System includes a graphical user interface that allows:

  • Plan missions
  • Assign tasks
  • Route planning
  • Monitor the robot fleet.
  • Location of each robot, robot status, battery level, mission status, etc.
  • Monitor events and alarms of the robots and the controllers that manage communication with lifts, doors and loading/unloading docks.

Robotic fleet management in logistics

The standard operation of a fleet of robots in logistics environments requires the periodic execution of transport operations. These are defined within the FMS as missions and are managed within a dynamic remote access database.

rb-roboutWithin robotic logistics tasks, it is essential to minimise transport times. It goes without saying that saving transport time for loads or goods saves costs.
In addition to minimising transport times, there are other advantages offered by robot fleet management. For example, maximising autonomy times, priority management, quality control if it is a mobile manipulator, etc.

How does robotic fleet management help with priority management?

A situation that can be recurrent in a warehouse is the following: an RB-1 BASE is executing a low-priority task and crosses paths with an RB-THERON that is going to execute a high-priority task. They converge at the same point in the warehouse through an aisle area where they cannot both pass at the same time and, therefore, they block and stop for safety. At this point, what is the optimal mission and how do the robots decide which one has to pass first?

In a work floor there are many such situations and solving them in one way or another means capital gain or loss.

rb-1 base

Robotic fleet management in other sectors

Although the most widespread use of robot fleet management is in logistics tasks, it also has applications in other areas, for example in the security and rescue sector. Imagine mapping an unknown area. If it is a disaster area, one robot is mapping - the point is to minimise mapping time - another is detecting survivors and another is removing debris. Coordination is essential here.

Another example, in a hospital. Perhaps in a hospital environment the goal is for autonomous robots to perform their tasks when there are fewer people. In such a case, the robot fleet management system will optimise when is the best time for each robot to work and in which areas.


In conclusion

A system that coordinates, manages and optimises each of the robots individually and in relation to each other is essential, and that is what the robot fleet management system does.

inspection robot

Robots for inspection and maintenance tasks

Inspection and maintenance tasks are a fundamental part of many industrial sectors: deteriorated infrastructures, tunnels, refineries, old buildings...

Mobile robotics allows the automation of operations related to the inspection and maintenance of scenarios that involve danger for operators.

In Robotnik has grown in recent years, the demand for AMR (Autonomous Mobile Robots) both for end users and for R&D projects that promote research in this direction.

Safe industrial inspection

There are difficult to access or dangerous environments for humans, such as nuclear power plants, the chemical industry where toxic substances are handled, or places where there is a danger of collapse, among others.

Mobile robotics offers multiple advantages for inspection tasks in these cases:

  • Ensuring operator safety
  • Reducing the cost of operations
  • Ability to enter hard-to-reach spaces
  • Reducing errors due to fatigue or poor environmental conditions

Autonomous mobile robots for remote inspection

What kind of robots are in demand for inspection and for which applications specifically?

Robotnik has delivered several SUMMIT-XL robots for inspection applications in tunnels, remote substations, agricultural fields, shipbuilding and railway infrastructure, among others.
The SUMMIT-XL is a robust ROS-based modular platform that allows customisation for multiple outdoor and indoor applications. The platform has an autonomy of 5 hours of operation, includes a self-recharging station and is capable of mounting a wide range of sensors and actuators.

summit-xlProblem, context and state-of-the-art

To operate in areas where there may be no data network available or insufficient bandwidth, mobile and autonomous robots capable of operating in these scenarios are needed.

Robot operation is limited by both low autonomy and network limitations. The absence of data networks with the necessary characteristics for real telepresence has meant that most efforts to date have focused on providing robots with a high level of autonomy to perform complex maintenance or inspection operations.

The emergence of 5G technology allows new operating schemes to be used, in which the robot autonomously performs a large part of the mission, but also simplifies remote access to the robot from anywhere. Thus it can be teleoperated in circumstances for which it has not been programmed.

5G networks have latency and bandwidth that enable efficient robot teleoperation and complex teleoperated operations (turning a valve, changing a fuse, resetting a circuit breaker, opening a control panel and searching for a damaged component, etc.).

The robots will continue performing autonomous missions. When their level of autonomy is not capable of solving a problem, an operator will take control and perform the corresponding operation via telepresence, providing intelligence and decision-making.

The robot is operated from a standard HMI that can be customised to the user's specific needs. Additional sensors are added as new tabs and specific functionalities such as RTK-DGPS navigation or 3D point cloud visualisation are enabled in the same environment. The use of web-served interfaces allows remote operation and monitoring from any portable device or PC, as only a web browser is needed.

Success stories

There are several inspection success stories for which Robotnik has developed mobile robotics solutions. One example is the robotic vehicle for the maintenance service of the electricity interconnection tunnel between France and Spain.

To ensure the safety and reliability of the high-voltage power line between France and Spain, Robotnik has developed a fleet of robotic trains to monitor the condition of the tunnel section of the line.

The line is 64.5 km long, 33.5 km in France and 31 km in Spain, and crosses the Pyrenees through an 8.5 km tunnel in the central part of the route. This is an ambitious European project being developed by the mixed capital company INELFE (Interconexión Eléctrica Francia-España, a company formed by the public electricity companies of each country).

The interconnection between the two countries aims to optimise the daily production of the power plants, increase opportunities to operate with renewable energies and improve supply conditions.

Finally, it is important for Robotnik to highlight the importance of robot simulation in inspection projects. Simulated robots and environments make possible to start software development at an early stage and to reproduce the operating conditions even before the hardware has been developed. The simulation phase allows testing of kinematic and sensor configurations and is an important part of the design iteration cycle. In this use case, simulation allowed testing of different fleet management systems, collision avoidance algorithms and point cloud processing strategies.


Success case of Robotnik and its RB-KAIROS+ in a Netherlands company

  • AER publishes in its 2021 yearbook the success story of Robotnik and its RB-KAIROS+ in a gear production company.

AER Automation is the Spanish Association of Robotics and Automation, a non-profit organization that brings together the main players in the automation and industrial, service and educational robotics market: manufacturers, distributors, engineering companies, integrators, technology centers, startups, universities, training centers and user companies.

It is a founding member of the International Federation of Robotics (IFR), has the mission to promote the transformation of the productive fabric in the Spanish territory through robotics and automation technologies, as well as to establish a strategic agenda to meet the challenges of the future. It also aims to provide knowledge to improve competitiveness and business efficiency in all sectors. Finally, the association aims to ensure a fluid access of qualified young talent to Industry 4.0, also promoting the qualification of senior talent.

Robotnik, as a leading Spanish company in mobile robotics, has been a member of AER for years. For this reason, the annual edition of its INSIGHT includes one of Robotnik's recent success stories, based on an industrial implementation in the Netherlands company Hankamp Gears BV. It features the RB-KAIROS+, an autonomous mobile manipulator designed and manufactured by Robotnik specifically for industrial applications such as pick and place.


Robotnik's RB-KAIROS+ mobile manipulator, designed specifically for pick & place tasks, is incorporated into a gearbox factory.

Pick and place tasks are often among the most tedious, demanding and toughest - physically and mentally - for employees in an industrial environment. And, at the same time, they are indispensable in any manufacturing process. Robotnik has developed the RB-KAIROS+ mobile manipulator as a solution to automate this process.

During the past year, the Dutch company Hankamp Gears BV decided to incorporate autonomous and collaborative mobile robotics in its factory and thus began a relationship with the Spanish company Robotnik Automation, which has 20 years of experience in the sector.

Hankamp Gears BV carries out the entire production process of high-quality gears in-house, so their goal has always been to minimize the failure rate and potential risks that can occur during production and, in turn, reduce the delivery time and price of the parts they manufacture.

To achieve this goal, they have relied on the RB-KAIROS+ mobile manipulator as a solution to automate this part of production, since it is not only capable of performing a task without human intervention, but also of self-managing and making decisions, thanks to its ability to access, generate and process information.


The RB-KAIROS+ mobile manipulator, designed and manufactured by Robotnik, is extremely useful for industrial applications such as pick and place as it is completely autonomous and allows the robotic arm to work in different locations, expanding its work area. In addition, RB-KAIROS+ can be configured with a wide range of sensors and components that are within the UR+ ecosystem, as it is a UR+ certified product. Last but not least, another of its features is its robust steel design, which allows it to carry up to 250 kg of load.

RB-KAIROS+ will perform pick and place and handling tasks in the metal gear production line of Hankamp Gears BV.


For all these reasons, Hankamp Gears BV has included this autonomous and collaborative mobile manipulator as part of its growth strategy. Specifically, RB-KAIROS+ will handle pick and place and handling tasks in the company's metal gear production line. Thanks to the complete integration of the UR16e arm, the robot navigates autonomously between the different points of the industrial hall in a safe way, avoiding any possible obstacles that may appear.

The simplification of processes is one of the major contributions of collaborative mobile handling to industry. A workspace in which humans and robots can work together safely makes the results infinitely more efficient, facilitating the task for operators, optimizing resources, obtaining a reduction in costs and, therefore, more efficient results.

The robot's robust, steel design allows it to carry up to 250 kg of payload.


Robotnik was founded in 2002 and is currently a reference in mobile robotics in the world. The company designs, manufactures and markets autonomous and collaborative mobile robots and manipulators for industry. Its technology, professionalism and the quality of its products and services have made it present in the main international markets.

Collaborative robotics in Industry 4.0

Collaborative robotics is a reality within Industry 4.0. It demonstrates that the future of industry looks like a workspace where robots and humans work together, each bringing their own strengths to the job.

Robots are well suited to perform repetitive and precision tasks because they apply the same criteria over and over again. Industry professionals, on the other hand, have the creativity and problem-solving skills needed to solve problems. The sum of the two leads to the greatest efficiency in production processes.

In the midst of this new collaborative work environment, the RB-KAIROS+ robot has emerged as a mobile solution to expand the capabilities of Universal Robots' e-Series arms, improving the efficiency of production lines.

The synergy between Robotnik and Universal Robots has allowed the creation of RB-KAIROS+, enhancing the portfolio of Collaborative Mobile Robots (CMR) and meeting the needs of those industries that are committed to collaborative robotics, that are aware of all its advantages and that have started their path towards Industry 4.0.


RB-KAIROS+ is a mobile robotic platform designed for plug & play integration of Universal Robots' e-Series arms, which increases the flexibility of these arms, allowing them to work in different areas. This means that the robot can perform a greater number of tasks in different spaces.

It has been developed, at hardware and software level, to facilitate the installation of the robotic arm, thus obtaining a powerful and easy-to-use collaborative mobile manipulator. The robot software is integrated in Polyscope, allowing easy programming.

It is a collaborative mobile manipulator, which means that it can work in different industrial environments safely, sharing the workspace with the operators.

RB-KAIROS+ is officially certified by UR+, which guarantees its compatibility with models: UR3, UR5, UR10, UR3e, UR5e, UR10e, and UR16e.

Benefits of integrating the RB-KAIROS+ in a company

Industries that are automating their lines through collaborative robotics can expand the potential of their arms thanks to the RB-KAIROS+ mobile manipulator. These arms can perform more tasks at a greater number of sites. One of the most important factors in most industrial processes is time, which has been increasingly optimized through process automation.

As was the case in the success story in the previous article with Hankamp Gears BV, this is achieved:

  • Unlimited extension of the working space of the cobots.
  • Increased effectiveness in various industrial tasks.
  • Greater profitability and improvement in production processes due to the versatility of the robotic arms only with the acquisition of a mobile platform compatible with all the arms of the UR e-Series.
  • Since the robot shares workspace with the operators, safer industrial and working environments are created.Providing a mechanical and repetitive, yet precise and constant work rhythm.

RB-KAIROS+ in action: vídeo.


The 11 most frequently asked questions about autonomous mobile robotics

  • Robotnik is a leader in autonomous and collaborative mobile robotics. Do you have questions about how it works, the applications, the advantages it can bring to your company? We have all the answers!

Collaborative mobile robotics is already a reality in many companies. According to the Fortune Business Insights report, 'the global autonomous mobile robot (AMR) market size was $1.67 billion in 2020'. However, many of them, especially SMEs, still have multiple doubts about how this technology can help their companies. As a leading company in the industry, we receive numerous queries in this regard. The first phase of any industrial implementation is the analysis phase and, from this phase, a multitude of unknowns arise. Today we have compiled the most representative questions in this article.


1. Difference between AGVs and AMR

AGVs (Automatic Guided Vehicles) have existed since the 1950s, normally for the transport of heavy loads. Their main characteristic is that they run on a lane or belt and follow a predetermined route. More advanced AGVs, on the other hand, are capable of detecting obstacles, but not of re-routing, so that when they encounter an obstacle, the robot will stop.

There are many differences and advantages of autonomous mobile robots (AMRs) over traditional AGVS (as can be seen in a previous article on Robotnik's blog). One of the main differences is that AMRs use free navigation by means of lasers, while AGVs are located with fixed elements: magnetic tapes, magnets, beacons... This means that in warehouses and places where the work environment is shared with humans, AMRs work better due to their dynamism and efficiency to share tasks.


2. In which areas or sectors can collaborative mobile robotics be applied?

It is difficult to say in which sectors it can be applied because Robotnik's experience shows that it is applicable to absolutely any sector.

Flexibility, collaboration between machines and people and diversification into new sectors and business models are setting the pace for robotics in 2021, according to the conclusions published by the International Federation of Robotics (IFR).

Particularly in Robotnik, we work with very diverse sectors: industrial, agri-food, health, defense or rescue, construction, logistics, academic...

In the end, the sector is autonomous mobile robotics, therefore, any area that needs to automate a task through this type of robots, is part of Robotnik's target.

To be specific, it is true that the most demanded application by industrial customers is the transport of loads from one point to another or pick and place in the case of mobile manipulators. In addition, Robotnik's robots have the capacity to combine the process in indoor and outdoor environments, one of the competitive advantages of the company and the reason why many customers choose it. Many companies require transport to be carried out both indoors and outdoors (e.g., when they have several buildings), so the most optimal solution is for the same vehicle to carry it out.

Other applications that are also common: picking tasks (in collaboration with an operator to speed up the order process), inspection applications (the robot can send an alert if it detects something out of place, normally thermography is used for this purpose) and surveillance or security (instead of the traditional fixed camera, the robot can travel around different points of a warehouse or factory, so it covers more points), selective spraying in agriculture, fruit inspection...


3. What exactly is an autonomous mobile robot?

There is a certain belief that an autonomous mobile robot (AMR) is simply a programmed machine and this is not the case. An autonomous robot must have the independence to make decisions in a work environment, without the need for human intervention.

There are many industrial machines that, when they perceive an obstacle, do not have the ability to decide, for example, to change their route. Therefore, these machines cannot be considered AMRs.

For a robot to be truly autonomous, it must perceive and understand the environment, making decisions that allow it to operate in the most effective way, even if the environment is changing.


4. What happens if the robot encounters an obstacle?

Robotnik integrates sensors and various components into its robots that receive, process and analyses data in real time and act accordingly. In other words, when an autonomous mobile robot encounters an obstacle on its route, such as a pallet, it will recalculate the route if possible or stop if it detects that it could harm the operators.

5. What are the phases of an industrial implementation project?

First of all, the application in which you want to use mobile robotics must be analysed. If it is viable, a technical and economic offer is drawn up. Then a pilot project is carried out, which is already part of the development of the project.

These projects require almost no maintenance, so that once the installation is optimised, the customer can manage it autonomously, thanks to the tools that Robotnik provides: Fleet Management System and User Interface.

6. How will automation affect my employees?

As we have said before, autonomy gives the robot the ability to know and recognise the environment in which it is working. This gives the operators more working capacity, as they do not have to be aware of the robot.

Therefore, this will be a first change for workers: to be able to focus on the tasks they perform without the need to supervise the robot and to free themselves from mechanical, heavy and even dangerous activities.

Undoubtedly, one of the questions that most concerns society is how robots will transform the workplace. A few months ago, Jeff Burnstein, president of the Association for Advancing Automation, said that the trend is for ‘better, safer, higher-paying jobs to be created by robotics, as technology increases what people do best, while doing the jobs people don't want to do’.

Throughout history, as technology has advanced, thousands of processes have been automated in factories that have improved the quality of life for their workers, this need be no different in the case of collaborative robotics.


7. How do I train my employees to coexist with mobile robotics?

One of the main advantages of Robotnik's AMRs is their easy configuration and installation thanks to their open software and hardware, which allows them to be adapted to the specific needs of the client and/or the application. In the end, this translates into quick and easy commissioning.

It may happen that in the staff of a factory or warehouse there are workers with a technical profile capable of leading the integration of robotics, but this is not usual. The service provided by the Engineering Department is one of the most appreciated aspects of Robotnik. A few months ago, Mr. Con Cronin of KOSTAL Ireland GmbH coined a review for us that spoke precisely of this: 'Robotnik's staff have always accompanied us in the process, going beyond their field of work. Robotnik engineers have developed a proof of concept and transformed it into a system ready for real production'.


8. What are the most disruptive technologies associated with robotics today?

Right now, you cannot understand robotics without talking about 5G, Artificial Intelligence or augmented reality. Another example of the most technologically innovative points: at Robotnik we not only work with 2D navigation but we are already using 3D.


9. How is AI used in robots?

Collaborative mobile robotics is evolving hand in hand with Artificial Intelligence. In the end, at Robotnik we develop autonomous mobile robots that will share space with humans and this implies that they have the ability to "think" for themselves in certain situations and make decisions that a human would make, but being a machine.


10.  What does it mean for a robot to integrate ROS architecture?

In recent years, ROS has become a standard in Service Robotics, and great advances are being made in the industrial sector.

Most robots and components on the market are supported in ROS, but sometimes it is not easy to find out which ones are, which version they support or how to acquire them. In the end, it is about finding a way to help the development of robotic applications, facilitating the communication between sensors and algorithms, following the paradigm of "program once, test everywhere".

One of our main objectives is to link the products with their drivers and/or software for ROS, detailing how they are installed and configured and where tutorials or useful information can be found, among other aspects.


11. What are the most important components/sensors of a collaborative mobile robot?

Robotnik's mobile robots have multiple integration possibilities but among the most prominent would-be LiDAR devices, cameras, collaborative arms (for example, those of Universal Robots) or environmental sensors.

Of course, special mention should be made of safety lasers, the basis for collaborative autonomous localization and navigation.


5g valencia

The spanish Vice-president Nadia Calviño visits Valencia to learn first-hand about the Pilotos 5G project

  • Valencia has been the location to show the advances in 5G technology within the Pilotos 5G project, in which Robotnik, Orange, Elewit, Vysion or CFZ Cobots, among other partners that make up the UTE, have joined forces to develop new applications of this technological standar,

The First Vice-President of the Government and Minister of Economic Affairs and Digital Transformation, Nadia Calviño, attended one of the most important events of this 2021 in Valencia on Thursday 9 September to see, first-hand, some of the demonstrations that are being developed around 5G technology in different areas.

One of the pilots that took place live at La Marina de Valencia was Remote Inspection and Maintenance with Robots. In this use case, Robotnik collaborates with Orange and Huawei to carry out inspection and maintenance of electrical and railway infrastructures, using robots remotely controlled thanks to the 5G network for the Generalitat Valenciana and the electricity company Viesgo. Remote control of robots in complicated terrain requires high information transmission capacity (high quality images) and ultra-low latency.


Roberto Guzmán, CEO of Robotnik, showed the media and the various authorities who attended the event, the benefits of 5G technology in the field of mobile robotics and how the company is working on the 5G Pilots project through two use cases.

This work will translate into great opportunities for development and a sustainable future that will benefit different productive sectors and the business fabric in Spain.

After taking an interest in the evolution of each of the use cases, the minister said that "this is probably the most pleasant event of my week", and expressed her satisfaction at seeing how much progress the project has made in such a short time "what was a list of projects a year and a half ago is now a reality".

There is no doubt that this project brings great advances for both industry and other sectors, which will result in significant progress and benefits for society.

Below is a compilation of some of the information published about the event:

Una UTE liderada por Orange presenta las aplicaciones del 5G , Las Provincias

Calviño asiste en València a demostraciones sobre el uso de tecnología 5G , Agencia EFE

València, como nunca se ha visto , Levante-emv

Calviño supervisa los avances del 5G en València , Levante-emv

Nadia Calviño asiste en València a experiencias 5G que avanzan el futuro del turismo, la telemedicina, la agricultura y el mantenimiento de infraestructuras críticas , Orange

Valencia, nodo clave para el desarrollo del 5G en España , Nobbot


industrial mobile robots

What is an Autonomous Mobile Robot (AMR)? What Robotnik AMR brings to your business

  • Introduction to autonomous mobile robots and what you should consider before choosing.

  • Robotnik's mobile robots have advantages that bring competitive value to your industry. We tell you why.

Autonomous mobile robots (AMRs) have changed the automation landscape in industry, especially in collaborative environments. 

Collaborative mobile robotics is an aid in the execution of repetitive processes, adapting the movements of robots to the information they receive, process and share, as demonstrated by Robotnik's developments.

The purpose of this post is to tell in more detail what are the advantages of Robotnik's AMRs and how they add value to your company. At the same time, it is intended to show the real use of these devices from the perspective of a company with 19 years of experience in the sector, since in reality we find in the market many products that are marketed as AMR and they are not. 

mobile robot

Flexibility, collaboration between machines and people and diversification into new sectors and business models are setting the pace for robotics in 2021, according to the conclusions published by the International Federation of Robotics (IFR).

An autonomous mobile robot is not simply a programmed machine. An autonomous robot is one that, in addition to the initial programming, has the independence to make decisions in the working environment, without the need for human intervention. In other words, not every industrial machine is an AMR because not every machine has the capacity to make decisions based on the information it perceives (unforeseen obstacles, for example). 

And how does it perceive this information? Robotnik integrates in its robots sensors, computer systems that receive, process and analyze data in real time and act accordingly. 


Although there are some similarities between the two, an AGV is not an autonomous mobile robot. 

AGVs have been around since the 50s, usually for the transport of heavy loads, but they drive along a specific lane or conveyor belt and along a predetermined route. Another feature of the most advanced AGVs is that they are capable of detecting obstacles but not of re-routing: when they encounter an obstacle, they will stop. 

The flexibility of AMRs to work in different locations means, for example, no change in layout, easier scalability in terms of number of units and work zones or ROI (which can be measured more easily with a smaller, later scalable project).

AMRs use free navigation by means of lasers, while the others are located with fixed elements: magnetic tapes, magnets, beacons, etc....

This means that in warehouses and places where the work environment is shared with humans, AMRs work better because of their dynamism and efficiency in sharing tasks. In addition, autonomous mobile robots have much more advanced software and hardware that provide more efficient applications.

mobile robot

Why has automation and collaborative mobile robotics grown so much in industry?

While this topic could be covered in another detailed article, it is important to highlight, if only briefly, some of the reasons for the boom in recent years in the introduction of AMRs in the industrial sector:

  • Cost reduction
  • Improved operator safety 
  • Increased performance and productivity
  • Versatility and flexibility
  • ROI - Return on Investment. 

Robotnik designs, manufactures and markets autonomous mobile robots and mobile manipulators since 2002.

The wide experience in the sector makes Robotnik a reference company in mobile robotics in the world and leader in Europe.

Main advantages of Robotnik's AMRs

Easy configuration and installation

adapting to the needs of each customer, with an open software and hardware, which allows it to adapt to the specific needs of the customer and/or the application. In the end, this translates into a quick and easy start-up. 


Robotnik has the best price-quality ratio in the market. Mobile robotics is no longer exclusive to large companies; many SMEs have already integrated Robotnik mobile robotics in their companies, making the leap towards Industry 4.0.


Robotnik has the ability to create and develop new prototypes that are fully adapted to customer needs. Each project requires a mobile robot with specific characteristics.



thanks to the ability to make decisions, these robots carry out activities that complement, improve or replace those carried out by an operator. For a robot to be truly autonomous, must perceive and understand the environment and make decisions to operate in the most effective way, even if the environment changes or obstacles arise. In other words, autonomy gives the robot the ability to know and recognize the environment in which it is working. This gives operators greater working capacity, as they do not have to be aware of the robot. 


today's AMRs cover full work shifts, allowing them to work 24/7. The robots are equipped with automatic charging stations, so they can recharge their battery autonomously when needed.


One of society's biggest concerns is how robots will transform the workplace. According to Jeff Burnstein, president at Association for Advancing Automation the trend is that "better, safer and better-paying jobs will be created thanks to robotics, as technology increases what people do best, while doing the jobs that people don't want to do". In this sense, the expert anticipates an improvement in public perception of robots, which will come to be seen as helpers. Collaborative mobile robots are designed to share workspace with people, ensuring their safety and performing tasks that would be repetitive, heavy or unsafe for operators.

Omnidirectional movement:

allows time reduction, making it up to 5 times faster than a differential one in a large number of tasks. 

HMI (Human-Machine Interface):

Advanced user interface that allows the robot to be monitored and controlled remotely, as well as the generation and configuration of new work environments: mapping, definition of routes and waypoints. HMI functionalities are adapted to the robot capabilities, offering features such as real-time remote teleoperation, indoor and outdoor navigation handlers, creation of complex missions, and a mission scheduler system. This tool is very useful for the customer to be able to control the different operations from any device connected to the robot's network. It is also possible to connect remotely from anywhere in the world to robots equipped with 4G/5G connectivity.


mobile robot



Fleet Management System to coordinate a fleet of robots that share the same workspace and resources with the operators. The FMS user interface shows the global status of the workspace and all the deployed robots. It also provides an abstraction layer that allows users to interact with a single system. Missions, which can be generated automatically or manually, are assigned by a planning system to the most suitable robot at that moment. The system is connected to both the robot fleet and the workspace shared resources. It can monitor every mission and modify them accordingly to avoid interlocks. The FMS is able to actuate elements such as elevators, doors, or conveyors, and it can exchange information with other agents using standard communication protocols.

Mobile Robot Guide

It is aptly explained in Mobile Robot Guide: 'Mobile robots are a unique combination of mechanical and electrical systems, together with innovative software capabilities. The basic designs of a mobile robot system are no longer rocket science. The magic now resides in the software applications which supervise a mobile robot fleet and which enable the mobile robots to perceive their world and navigate effectively and efficiently'.



industry 4.0

Mobile robots and safety: the experience of Robotnik in HR-RECYCLER project

Collaborative robots have come front and center on the international stage as they’ve become widespread in Industry 4.0. Today we have more powerful, more advanced and more productive robots, so safety has become a key element.

Safety is the key

For Robotnik, as an experimented robot manufacturer and within the collaborative environment of the HR-Recycler project, this aspect is especially important since humans and robots will be working side by side. The solution proposed to routing materials inside a factory has to be done in a safe manner, in this case, the robots designed are the RB-KAIROS+ (mobile robotic manipulator) and the RB-ARES (pallet truck). It’s really important how the mobile robots  will show the intention of motion, elevate or manipulation.  

industry 4.0


To ensure the correct operation within the complex framework of this project, Robotnik has equipped its robots with sensors and signalers that allow the robot to proceed safely and show its intentions in advance. 

There are a number of ways manufacturers can introduce safety measures in their automated operations. The type and complexity of these safety measures will vary by the robotic application, with the aim to make the mobile robot safer, there are certain safety rules and standards that these collaborative robots must comply with, in Europe are found in EN ISO 3691-4:2020 and ISO 12100:2010 6.4.3

rb-ares mobile robot

Clarifying the ISO standard

This post aims to give to the reader a brief description about what, why and how all the premises of the ISO will be reached.

First of all, what does the normative include? The standards on warning systems say:

  1. When any movement begins after a stop condition of more than 10 seconds, a visible or acoustic warning signal will be activated for at least 2 seconds before the start of the movement.
  2. A visible or acoustic warning signal will be activated during any movement.
  3. If the human detection means are active, the signal will be different.
  4. When robots change their direction from a straight path, a visible indication will be given of the direction to take before the direction changes in case that the robot is driving autonomously.
  5. When the lift is active, there must be special signage.

The solution proposed is a two-steps software that will manage the signals of the robot, explained after the diagram and on red cells:

The robot_local_control is a manager node, it has information about the status of the whole robot, that is, status of the elevator, goal active, mission ended, etc. On the right side, a group of nodes that manages the movement of the robot with a level of priority:

  • Robotnik_pad_node:  The worker uses a PS4 pad to control the robot and this node will transmit the orders, non autonomous mode. 
  • Path planning nodes: like Move_base, it controls the robot and we speak of it as autonomous mode.

Robotnik has installed on its mobile robots  two ways to alert facility users, acoustic devices or light indicators through the acoustic_safety_driver and leds_driver.

industry 4.0

As you can see, there are two steps to link the top and bottom parts, a node to transform the movement into signals to show the intention of the robot and another one to orchestrate the both signal types and manage the requirements of the normative. 

A turn signal controller is intended to solve the first and fourth requirements of the regulation depending on the mode of the robot (autonomous or non-autonomous). 

In non autonomous mode, and as the norm says, the motion depends on an appropriately authorised and trained personnel so it is enough to show that the robot is moving by reading the movement command and checking the velocity applied. 

In autonomous mode the robot navigates to a goal point through a path calculated by the planner, furthermore it manages the AMR to avoid obstacles dynamically and for this reason it is important to alert workers every moment.

What is the process?

This is a very brief description of the function, it bears the plan in mind and recalculates at the same time that the planner does just to be able to show the most up-to-date prediction of motion.

Last but not least, the robot_signal_manager aims to solve the rest of the problems since it has access to the robot status, it shows a light signaling or an acoustic signal 2 seconds before the motion, it gives priority to the emergency signals (consistent with the behaviour of the robot, red signals means that the robot will be stopped) and the signals that are not exclusive are showed using beacons or acoustic signals.

The occupied zone is one of the non exclusive signals, robots have some extra beacons that blinks on red when there is something on the protective zone (close to the intention of motion of the robot, inside the critic zone) and on yellow when there is something on the warning zone (near the protective zone).



Safety is not only stopping the robot or avoiding a crash when human-robot collaboration takes place. With the development of these nodes Robotnik aims not only to decrease the probability of accident or comply with the safety ISO premises, but also to help workers feel more comfortable with the mobile robot’s decisions and bring human-robot collaboration closer, showing clear signals about how the robot will perform.

robots in logistics

RB-VOGUI, a collaborative robot for outdoor transport in industry

The Eurecat technology center and Robotnik Automation have developed the RB-VOGUI, a highly modular, autonomous and collaborative land robot designed for the autonomous transport of materials in the industrial and construction sectors, with a design that provides an advanced human-robot collaboration system.

As part of the European COBOLLEAGUE project, the robot is focused on autonomous navigation in outdoor industrial environments, which are characterized by uneven terrain and a wide variety of static and dynamic obstacles.

It is a highly mobile, all-terrain modular mobile base suitable for transporting loads of up to 200 kg.  Its design includes features that enable people tracking, gesture detection and voice-based control.

RB-VOGUI is able to generate a map of its environment and to locate and navigate it safely, being able to perform inter-plant transport tasks or last-mile transport tasks This map is also capable to identify all obstacles as well as possible cliffs and holes where the robot can fall through or collect data in construction environments that can then be used in conjunction with the building information modelling system BIM (Building Information Modeling).

Utility of mobile robotics in industry

According to Roberto Guzman, CEO of Robotnik, "the COBOLLEAGUE project demonstrates, once again, the utility of mobile robotics for applications in which repetitive tasks are performed, in this case, automating outdoor transportation in industry and construction. Our experience of almost 20 years in service robotics allows us to adapt our general purpose robots to different verticals, being able to provide mobile solutions in a wide variety of applications and sectors".   

In the words of the director of the Eurecat Robotics and Automation Unit, Daniel Serrano, "after more than a decade of R&D in location and autonomous navigation, in this project we have managed to develop a 3D location and mapping that takes advantage of the building model extracted directly from BIM. This project demonstrates the potential of the application of service robots in the construction sector, with many possibilities for the future".

Robotnik in Cobolleague project

Within the Cobolleague project, Robotnik has been responsible for the provision of the mechatronic solution and the development of the conceptual design, safety and human factors, as well as business case validation and industrial engagement. A new kinematic configuration has been developed to give the RB-VOGUI robot chassis greater mobility and allows it to perform autonomous transport tasks in urban environments or in unstructured environments with difficult terrain. A 3D laser localization and navigation system has been developed that has proven to work robustly, both indoors and outdoors.

mobile robot

Eurecat in Cobolleague project

For its part, Eurecat has been responsible for developing a BIM (Building Information Model) based interface that processes 3D building information, adding structural data to a simultaneous localization and mapping (SLAM) system used by a mobile robot. Thus, the robot can access a 3D map of the reference model and determine its own location in the construction environment, saving time and performing autonomous navigation to a destination, without first exploring the map. 

Futhermore, Eurecat's implementation allows tracking the status of construction and flagging updates to the reference model, a relevant feature for the construction industry. Eurecat also provides the integration of a multimodal worker-robot interface, so that the robot follows the workers in complete safety. 

COBOLLEAGUE has been supported by the ESMERA (European SMEs Robotics Applications) project, in its call for robotic solutions to industrial challenges. ESMERA is a consortium formed by four technology centers (the Laboratory for Manufacturing and Automation Systems of the University of Patras; the Commissariat à l'Énergie Atomique et aux Énergies Alternatives; and the Tekniker Foundation and Technische Universität München), and three industrial partners (Blue Ocean Robotics; COMAU; and R.U. Robots).

Video demostration here.

Smart factories: how robots are leading industry changes

Smart factories are production companies and factories with a level of automation and digitalization that allows them to take advantage of the potential of the latest technologies to improve their productivity and create more flexible and streamlined processes.

These types of factories operate within the realms of Industry 4.0, also known as the Connected Industry. In this industry, what stands out most is how data and information flows are created, as well as the involvement of robots and humans in those processes.

When we speak of smart factories, that implies mobile robotics autonomous and collaborative robots that enable intelligent automation and the creation of safer, more productive work environments where the interaction between machines and humans ensures optimal use of each of their qualities and capabilities.

What are the characteristics of a smart factory?

To understand why collaborative robotics is one of the key players in Industry 4.0 - promoting innovative changes and creating new production methods - then we must begin by understanding the features that determine whether an industry is operating intelligently or not.

Automation of processes

This process of automation doesn’t set out to replace manpower; it aims to optimize tasks through the use of new technologies, such as Artificial Intelligence, Big Data, or the Internet of Things.

These automated solutions give access to a wealth of data that generates more information, reduces uncertainty, and increases process control.


Production and market environments are increasingly changing and the survival of many companies depends on their degree of adaptability to new customer needs or demands. 

To be able to cope with this, they first need to create a streamlined, flexible industrial workspace that can adapt to change, without needing to incur large losses. In this way, automation allows for greater versatility without suffering production downtime.

Redesigning the production line

Connectivity and automation are responsible for making collaborative robotics and intelligent mobile manipulators more accessible for all types of industries and all sizes of companies. 

So, we can see that production volumes don’t create so many competitive advantages anymore; these days competitiveness revolves more around the ability to streamline the assembly line processes with fewer resources, and to create higher quality products at a lower cost.

Focusing on work strengths

It is important to bear in mind that smart factories don’t dispense with the human workforce; they strive to relocate them to take care of more value tasks.

Collaborative robots are designed to assist humans; their function is to interact with them and function under their control in order to take care of their speciality: repetitive tasks carried out uniformly and at a constant speed.

Mobile robotics solutions at the forefront of Industry 4.0

Robotnik is an expert in the design and manufacture of mobile robots and mobile manipulators that are used as automated solutions for different applications and services, and especially for logistics.

mobile manipulator in warehouse

Mobile robotics for logistics by taking over the tasks of transporting and picking materials, and, in turn, freeing operators from repetitive and tedious tasks where efficiency and effectiveness can be lost.

The mobile robots are controlled by a Fleet Management System that simplifies the handling of the robots and creates safe, efficient transport routes, where robots can work in the same environment as operators.

Mobile manipulators are a very useful automated solution in smart factories because they permit you, above all, to save time and improve the efficiency of any given process.

Mobile manipulators are extremely useful for industrial applications such as pick and place, part feeding, metrology, quality control, operations on large parts or packaging, cleaning, polishing, screwing or drilling.

The main advantage of a mobile manipulator is its capacity to expand the cobot workspace unlimitedly. In the case of RB-KAIROS+ from Robotnik's it should be noted its omni-directional movement which allows the reduction of times, making it 1/5 times faster than a differential.

The simplification of mechanical processes is the greatest added value that collaborative mobile robots can bring to the industry, leaving creativity to people.

robotics in warehousing

Collaborative Robots vs Industrial Robots: key differences

When we talk about Industry 4.0, we can’t help but talk about collaborative robots and how this intelligent automated solution has been a turning point in the integration of new technologies in industry.

Industry 4.0 has been made possible thanks to the extensive experience already obtained in the field of industrial robotics and its presence on the production lines to automate tasks in a wide variety of sectors, all with the aim of improving productivity, efficiency, and quality.

We would quite possibly never be talking about collaborative robots without the original development of industrial robots and their evolution towards the design of intelligent automated solutions, based on interaction with humans.

mobile industrial robotics

Because of this, none of these types of robotics is better than the other,  they are complimented tools. Rather they are complementary, they are automated systems developed for different types of needs and objectives. It is, therefore, essential to understand what they are, what they contribute to industry, their key differences, and how they facilitate coexistence and work coordination.

Industrial robots

Industrial robots were created as an automated solution to take on intensive production tasks that require a constantly moving assembly line.

They are generally large and heavy, and placed in fixed positions within the industrial plant, configured with modules that do not have force sensors.

These robots are designed and configured to work automatically and intensively, their priority being the constant execution of their tasks. In addition, they need a fenced safety area to protect the human operators around them. 

Industrial robots are designed to perform a single task with high precision and speed. It doesn’t need to be moved, and so its positioning is a priority. The rest of the workers' tasks and processes are adapted to fit in with the robot’s capabilities and workload.

In the case of mobile robotics, we could tell that the first step in the industrial sector were the AGVs. These types of robots require physical elements to function (magnets, beacons ...), so they imply a modification of the layout, they are not capable of overcoming obstacles and the same robot doesn't have the same flexibility that a CMR does to work in different locations.

Collaborative robots

The collaborative robots are automated solutions designed to work interactively with humans. To facilitate this, they are specially designed to be quite compact and lightweight, thus ensuring they can be easily moved and take up little space in a plant’s working areas.

Collaborative robots are designed to work with people, and so safety is key. For that reason, they have built-in movement detection sensors which ensure that they can alter their operations or speed to facilitate safe shared-working environments.

mobile industrial robotics

They aren’t designed to carry out just one specific task, but, rather, to simplify the different processes that they may be involved in. This is why adaptability and flexibility are priorities in their design, as well as being easy to programme in order to carry out their different tasks optimally. 

The Collaborative Mobile Robots (CMR) have numerous advantages compared to traditional AGVS and help to reduce production costs for their rapid installation, flexibility, space saving, improved safety in the workspace and represent an aid for operators. As we have already mentioned before, they do not require physical elements and can work in different locations.

What are the differences between industrial robots and Collaborative Robots?

In general terms, the differences lie in the purpose they have been designed and developed for.

As far as industrial robots are concerned, they are designed to automate tasks and improve productivity, efficiency, and quality. They are created to perform a single task, but they can perform it so efficiently that they become essential for the optimal operation of an assembly line.  Is the case of industrial arms in sectors such us automotion or alimentation, for example.

So, as you can see, we’re talking here about robots with a high degree of specialization, and a complex configuration carried out by experts, involving the creation of a workspace that requires specific safety measures. In addition to this, there are electricity, operation, and maintenance costs.  

A cobot, on the other hand, is a collaborative robot, which means they are automated tools created to operate under the guidelines of an operator, with whom it works in a coordinated and safe manner, all in the same workspace. This makes it capable of executing a single task or intervening in different tasks, depending on the production needs and the parameters it has been configured with.

mobile robot in warehouse

Because of this, a collaborative robot stands out for its versatility and ease of programming. This means that it can be easily integrated into the production line and can be operated and configured by an operator with basic knowledge.

This type of robot is able to free operators up from repetitive and precision-demanding tasks, thus helping to improve productivity and the quality of the result. This adaptability and interactive working influence their cost, as cobots stand out for their quick return on investment.

The CMR are perfect for autonomous transport loads and the mobile manipulators are designed for tasks such as pick&place, part feeding,  packaging, cleaning, polishing, screwing or drilling.

So, as we can see, both industrial robots and collaborative robots have their place on the production line, with the former conceived as a replacement for human workers, and the latter as a helper and ally to improve work efficiency.