industry 4.0

Mobile robots and safety: the experience of Robotnik in HR-RECYCLER project

Collaborative robots have come front and center on the international stage as they’ve become widespread in Industry 4.0. Today we have more powerful, more advanced and more productive robots, so safety has become a key element.

Safety is the key

For Robotnik, as an experimented robot manufacturer and within the collaborative environment of the HR-Recycler project, this aspect is especially important since humans and robots will be working side by side. The solution proposed to routing materials inside a factory has to be done in a safe manner, in this case, the robots designed are the RB-KAIROS+ (mobile robotic manipulator) and the RB-ARES (pallet truck). It’s really important how the mobile robots  will show the intention of motion, elevate or manipulation.  

industry 4.0

 

To ensure the correct operation within the complex framework of this project, Robotnik has equipped its robots with sensors and signalers that allow the robot to proceed safely and show its intentions in advance. 

There are a number of ways manufacturers can introduce safety measures in their automated operations. The type and complexity of these safety measures will vary by the robotic application, with the aim to make the mobile robot safer, there are certain safety rules and standards that these collaborative robots must comply with, in Europe are found in EN ISO 3691-4:2020 and ISO 12100:2010 6.4.3

Clarifying the ISO standard

This post aims to give to the reader a brief description about what, why and how all the premises of the ISO will be reached.

First of all, what does the normative include? The standards on warning systems say:

  1. When any movement begins after a stop condition of more than 10 seconds, a visible or acoustic warning signal will be activated for at least 2 seconds before the start of the movement.
  2. A visible or acoustic warning signal will be activated during any movement.
  3. If the human detection means are active, the signal will be different.
  4. When robots change their direction from a straight path, a visible indication will be given of the direction to take before the direction changes in case that the robot is driving autonomously.
  5. When the lift is active, there must be special signage.

The solution proposed is a two-steps software that will manage the signals of the robot, explained after the diagram and on red cells:

The robot_local_control is a manager node, it has information about the status of the whole robot, that is, status of the elevator, goal active, mission ended, etc. On the right side, a group of nodes that manages the movement of the robot with a level of priority:

  • Robotnik_pad_node:  The worker uses a PS4 pad to control the robot and this node will transmit the orders, non autonomous mode. 
  • Path planning nodes: like Move_base, it controls the robot and we speak of it as autonomous mode.

Robotnik has installed on its mobile robots  two ways to alert facility users, acoustic devices or light indicators through the acoustic_safety_driver and leds_driver.

industry 4.0

As you can see, there are two steps to link the top and bottom parts, a node to transform the movement into signals to show the intention of the robot and another one to orchestrate the both signal types and manage the requirements of the normative. 

The turn_signaling_controller aims to solve the first and the fourth requirements of the normative depending on the robot mode (autonomous or not autonomous). 

In non autonomous mode, and as the norm says, the motion depends on an appropriately authorised and trained personnel so it is enough to show that the robot is moving by reading the movement command and checking the velocity applied. 

In autonomous mode the robot navigates to a goal point through a path calculated by the planner, furthermore it manages the AGV to avoid obstacles dynamically and for this reason it is important to alert workers every moment.

What is the process?

This is a very brief description of the function, it bears the plan in mind and recalculates at the same time that the planner does just to be able to show the most up-to-date prediction of motion.

Last but not least, the robot_signal_manager aims to solve the rest of the problems since it has access to the robot status, it shows a light signaling or an acoustic signal 2 seconds before the motion, it gives priority to the emergency signals (consistent with the behaviour of the robot, red signals means that the robot will be stopped) and the signals that are not exclusive are showed using beacons or acoustic signals.

The occupied zone is one of the non exclusive signals, robots have some extra beacons that blinks on red when there is something on the protective zone (close to the intention of motion of the robot, inside the critic zone) and on yellow when there is something on the warning zone (near the protective zone).

 

Summarizing

Safety is not only stopping the robot or avoiding a crash when human-robot collaboration takes place. With the development of these nodes Robotnik aims not only to decrease the probability of accident or comply with the safety ISO premises, but also to help workers feel more comfortable with the mobile robot’s decisions and bring human-robot collaboration closer, showing clear signals about how the robot will perform.


industry 4.0

Robotnik in the recycling of electronic waste (E-Waste): HR-RECYCLER

The recycling of electronic waste (E-Waste) is currently the biggest threat to the planet, according to the Global Recycling Foundation.  

In fact, the United Nations recently warned that e-waste is considered to be the "fastest growing waste stream in the world"; we are actually talking about around 53 million tonnes per year (according to the UNU Global E-waste Monitor 2020 report, in 2019), which will increase considerably in the coming years, including toxic components and hazardous waste if not properly recycled.

The recycling of WEEE is a time and effort consuming process, due to the variety of devices to be recycled and the different components and materials they are made of. In the face of this reality, we, the industries, cannot remain on the sidelines. 

Robotnik wants to be part of the solution and therefore, we participate in HR-RECYCLER, a multidisciplinary project which aims to improve the recycling capacity of European countries.

Human-robot collaboration in the WEEE recycling process.

A key issue in recycling processes is the routing of raw and disassembled materials and components through the recycling plant. This is a resource-consuming process, as materials and components are processed in various parts of the factory. In a typical recycling process, unsorted devices arrive at the recycling plant in large trucks. After sorting, each device has to be transported to its recycling station where it is separated into its components. The components can be further separated or ready to be moved to their final destination.

This is where Robotnik comes in. Transporting materials within a factory has to be done affordably, efficiently and safely. Furthermore, with the advent of the fourth industrial revolution, mobile robots have to be able to operate in collaboration with humans sharing the same space.

How to make it affordable?

Affordability is achieved by providing a mobile robot capable of transporting the same baskets that the factory already has, which reduces the number of changes that need to be made in the factory.

How to make it really efficient?

Efficiency is achieved through state-of-the-art navigation algorithms, as well as factory planning algorithms in general. Collaboration is achieved through the use of human-aware navigation, but also by increasing communication between the robot and the human about the robot's intentions. Safety is achieved through the application of stringent measures, sensors and actuators that comply with the latest safety standards.

All this effort is directed by Robotnik towards the creation of a new robot: RB-ARES. Robotnik has developed a reliable solution that integrates robots, localization systems, configuration and programming tools (HMI) and Fleet Management System (FMS). This knowledge will be integrated into the new RB-ARES, which is able to carry up 

to 1.500 Kg. and make a completely autonomous navigation.

Application of the RB-ARES robot in in recycling.

The purpose of RB-AREs will be to pick and place EURO pallets at ground level and direct them through the factory with the required features of affordability, efficiency, safety and collaboration with people. To fulfil this mission, RB-Ares is equipped with state-of-the-art actuators and sensors.

 

RB-ARES is powered by ROS, as well as Robotnik's own technology for navigation, localization and human-machine interface, which allows easy configuration, programming and integration of the robot into different applications and fleet management systems, as is required by Industry 4.0. This is the main feature of Collaborative Mobile Robots like RB-ARES, an intelligent mobile robot that assists humans in a shared workspace and supports the optimisation of processes within the industry.

[1] World Economic Forum. (2019). A New Circular Vision for Electronics: Time for a Global Reboot, (January), 24. Retrieved from


Bots2ReC, robotic extraction of asbestos fibres from buildings

Europe has paid a high price for asbestos, with over 100 000 related deaths. First in line in the fight to free buildings from asbestos contamination, workers in the construction sector could soon find a helping hand in the form of an AI-piloted robotic system.

The constant and multifaceted evolution of society has left very few industries unchanged. For most sectors, this has meant moving towards increased automation. Most, but not all. One unyielding sector has largely stayed true to its old ways: the construction sector. For the past 200 years, the same repetitive, standardised, and physically challenging construction tasks have been performed by workers with their own two hands. But this could change soon thanks to projects as Bots2ReC (Robots to Re-Construction). The reasoning behind Bots2ReC is simple: some tasks are simply too hazardous for humans to perform, and machines could easily replace them. “Besides the exposure, some processes or the materials handled in those processes generate health hazards in the form of dust, vibration, noise or toxic substances. It is precisely for these tasks that we could expect great benefits from – and also show the massive potential of – automation to achieve sustainable socio-ecological improvements,” says Tobias Haschke, coordinator of the project on behalf of RWTH Aachen University.

Tailored to construction sector needs

To enable such automation, the project consortium first had to overcome barriers related to the nature of the construction sector. Whereas most industries manufacture in a defined environment, the construction industry has historically had to cope with a continuously changing environment with varying rules and procedures. As Haschke explains: “The key to success lies in the technical control of this constant change.” Recent developments in computer science, storage systems and sensors were key enablers that set Bots2ReC in motion. They enabled the introduction of semi-autonomous solutions through mobile handling of environment complexity. Over a span of 3 years, the project team developed a robotic system capable of handling asbestos removal on construction sites. “The robot operates asbestos removal comprehensively and not just piece by piece. Thanks to its AI capabilities, it is also tailor-made to be used under real conditions,” Haschke explains. “The AI combines a tailored lightweight data format for environmental representation with a complex planning module. As a result, it can provide a scalable system in terms of fleet size and it automatically adapts to the floor plans at hand”. Most tests of the Bots2ReC were carried out with a grinding disk to reflect the actual process of asbestos removal. This helped the team understand and subsequently control the complex mechanisms of such interaction. Furthermore, the system was examined for its suitability for use in normal residential buildings, and tested in various room and floor plan constellations. The results are promising, with basic accessibility reaching almost 90 % of the wall surfaces of a general dwelling. A direct comparison to manual work is still pending and will be implemented in the follow-up of the project.

The greatest achievement

“To me, our greatest achievement is the robot itself. Its design and mode of operation are tailored to the requirements of the construction industry, and its design method is unique. This is reflected in the processable ceiling height of 3 m, which is simultaneously paired with an arm payload of 20 kg and continuous power supply via the mobile, omni-directional tandem system,” Haschke explains. The project has already generated attention in the construction industry, both for its complete robotic system and for its components.

Although Bots2ReC was completed in November 2019, the team has been investigating further developments of grinding processes, planning logic and radar technology since then. These are already in demand and should be commercialised within the next 2 years. “We are especially proud of the products that have been decoupled during the project and are already available on the market in the form of two mobile robots at Robotnik Automation (RB-2 BASE and Summit XL Steel),  and various improved radar sensors from indurad GmbH,” Haschke notes. With its focus on asbestos, Bots2ReC is well placed to reduce the future health burden on workers. There is little doubt that the cost of the technology will easily be counterbalanced by its high social benefit and economic efficiency. The project could be adapted for the removal of other hazardous products, such as lead paint.


Robotnik and Itera collaborate in the development of the "Symphony"

Research and development of intelligent technology management system with multifunctional capabilities for operational improvement in the industry project. Supported by the Valencian Agency of Innovation, the objective of this project is the development of the technologies necessary to have robots and mobile manipulators easy to integrate and use. These technologies include advanced robot and operator location systems, cloud fleet management and planning systems, new quality control systems and parameter calibration. This project has been supported by the AVI (Valencian Agency of Innovation) and has the collaboration of the technological institutes Ai2 (Industrial Automation and Computing) and ITI (Technological Institute of Informatics).

 


Autonomous robotics to implement precision agriculture

Inside the iDRONE project, funded by IVACE, AINIA has developed a model of precision agriculture based on hyperspectral vision sensors, unmanned flight devices (drones and autonomous robots) and the application of Artificial Intelligence techniques and Big data analytics.

The application of these advanced technologies in the tasks of the field will allow the farmer to apply phytosanitary treatments to each plant or crop according to their needs, or decide the optimal time of collection selectively, among other advantages.

The contribution of Robotnik to the project is the Summit XL autonomous robot, customized with the corresponding sensorization and that has been used in various R&D projects focused on precision agriculture.

More information:


Article in Robohub about the AIDE project

Robohub notes to the results of the project AIDE, which develops an automated wheelchair with an exoskeleton robotic arm for use in the home. The idea is that the next-generation of wheelchairs could incorporate brain-controlled robotic arms and rentable add-on motors in order to help people with disabilities more easily carry out daily tasks or get around a city. The automated wheelchair uses artificial intelligence to extract relevant information from the user, such as their behaviour, intentions and emotional state, and also analyses its environmental surroundings.

Read the full article here .


What is SWARM Logistics Assistant?

SWARM Logistics Assistant comes up from H2020 CPSwarm project. In it, Robotnik contributes with its knowledge in Cyber Phisical Systems. Robotnik has large experience in ROS, software used by all their robots, furthermore in the simulation software. The project has several mobile platforms from Robotnik, which are working to supporting the workers in tedious tasks in a warehouse.

The robots also make a scanner of the warehouse work space and share this information to updating the data base in real time. Likewise, the robots also collect additional information related to matters such as the ambient temperature, the presence of human beings, the detection of obstacles along the way, etc.

In the following video you can see the feasibility and effectiveness of the project:

 

 


DLR: Swarm Navigation and Exploration for Gas Source Localization with SUMMIT-XL

DLR demonstrates at this video a navigation system and exploration strategy for a multi-robot system (several units of the SUMMIT-XL),with the goal to find unknown gas sources. The system was developed at the Institute of Communication and Navigation at the German Aerospace Center (DLR). This work was partially supported within VALLES MARINERIS EXPLORER - an Initiative of DLR Space Administration.

More info


The Robotnik I-SUPPORT project appears on CORDIS

CORDIS, the online platform of information dedicated to the research, development and innovation activities of the EU, has published an article about the I-SUPPORT project in which Robotnik has participated.

Rafael López, R&D Manager at Robotnik, led the I-SUPPORT team to develop an advanced, safe and independent system that can assist in tasks such as washing, scrubbing, rinsing, and getting to hard-to-reach body parts with easy-to-use commands through voice and intuitive gestures.

Read article→


The Emerging Spring of Artificial Intelligence

Robotnik has a very long track record of participations in EU research projects. Since 2004 we are collaborating with different institutions and companies on the development of state-of-the-art robotic platforms for many different applications, such as border surveillance, firefighting, tunnel inspection or swarming behaviours.

The last EU research project, started on July 2018 and with a total duration of 36 months, means a new challenge for the company, since it is based on a joint collaboration between the European Commission and the Korean government (Ministry of Science, ICT and Future Planning, MSIP). Under such collaboration both European and Korean institutions and companies are taking part on a project called DECENTER: Decentralised technologies for orchestrated cloud-to-edge intelligence.

The emerging spring of Artificial Intelligence (AI) will enable innovative applications exploiting the myriad of connected sensors and appliances embedded in every corner of modern life. Currently, AI requires high computational resources only available in high-performance data centres; therefore, realizing an architecture capable of securely processing this unprecedented amount of remotely sensed and potentially sensitive data, as well as conveying timely responses to pervasive configurable actuators is a non-trivial endeavour, requiring the cooperation of multiple parties. To address these challenges, DECENTER aims to realise a robust Fog Computing platform, covering the whole Cloud-to-Things Continuum, that will provide AI application-aware orchestration and provisioning of resources. The project will enrich existing Cloud and IoT solutions with advanced capabilities to abstract features and process data closer to where it is produced. DECENTER will enable a collaborative environment in which multiple stakeholders (Cloud and IoT providers) can securely share and harmoniously manage resources, in dynamically created multi-cloud/edge, federated environments. Cross-border infrastructure federation will be realized via Blockchain-based Smart Contracts defining customized Service Level Agreements, used to commit the execution of verified workloads across multiple, potentially remote, administrative domains.

Through such novelties, DECENTER will unlock the potential of innovative decentralised AI algorithms and models, by deploying them across multiple tiers of the infrastructure and federated clouds. The project will follow a lean implementation methodology and validate its concept with real-world pilots executed in urban, industrial and home environments.

Within DECENTER, Robotnik will develop a logistic use case, that will test a new, cost-effective, robotic indoor transport solution that will be specially suited for warehouses and will automate the transport process and free workforce for tasks that entail higher added value. To this end, the use case will permit the incorporation of a swarm of RB1-BASE robots into the cloud/edge system services, allowing enhancing its functionality by the use of Edge Computing and a centralized Cloud.